Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.).
Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
Mol Pharmacol. 2024 Feb 15;105(3):260-271. doi: 10.1124/molpharm.123.000797.
Dualsteric G protein-coupled receptor (GPCR) ligands are a class of bitopic ligands that consist of an orthosteric pharmacophore, which binds to the pocket occupied by the receptor's endogenous agonist, and an allosteric pharmacophore, which binds to a distinct site. These ligands have the potential to display characteristics of both orthosteric and allosteric ligands. To explore the signaling profiles that dualsteric ligands of the angiotensin II type 1 receptor (AT1R) can access, we ligated a 6e epitope tag-specific nanobody (single-domain antibody fragment) to angiotensin II (AngII) and analogs that show preferential allosteric coupling to Gq (TRV055, TRV056) or -arrestin (TRV027). While the nanobody itself acts as a probe-specific neutral or negative allosteric ligand of -terminally 6e-tagged AT1R, nanobody conjugation to orthosteric ligands had varying effects on Gq dissociation and -arrestin plasma membrane recruitment. The potency of certain AngII analogs was enhanced up to 100-fold, and some conjugates behaved as partial agonists, with up to a 5-fold decrease in maximal efficacy. Nanobody conjugation also biased the signaling of TRV055 and TRV056 toward Gq, suggesting that Gq bias at AT1R can be modulated through molecular mechanisms distinct from those previously elucidated. Both competition radioligand binding experiments and functional assays demonstrated that orthosteric antagonists (angiotensin receptor blockers) act as non-competitive inhibitors of all these nanobody-peptide conjugates. This proof-of-principle study illustrates the array of pharmacological patterns that can be achieved by incorporating neutral or negative allosteric pharmacophores into dualsteric ligands. Nanobodies directed toward linear epitopes could provide a rich source of allosteric reagents for this purpose. SIGNIFICANCE STATEMENT: Here we engineer bitopic (dualsteric) ligands for epitope-tagged angiotensin II type 1 receptor by conjugating angiotensin II or its biased analogs to an epitope-specific nanobody (antibody fragment). Our data demonstrate that nanobody-mediated interactions with the receptor -terminus endow angiotensin analogs with properties of allosteric modulators and provide a novel mechanism to increase the potency, modulate the maximal effect, or alter the bias of ligands.
双位 G 蛋白偶联受体 (GPCR) 配体是一类双位配体,由占据受体内源性激动剂结合口袋的正位药效团和结合到不同位点的变构药效团组成。这些配体有可能表现出正位和变构配体的特征。为了探索血管紧张素 II 型 1 受体 (AT1R) 的双位配体可以获得的信号转导特征,我们将 6e 表位标签特异性纳米体(单域抗体片段)连接到血管紧张素 II (AngII) 和显示优先变构偶联到 Gq(TRV055、TRV056)或 -arrestin(TRV027)的类似物上。虽然纳米体本身作为末端 6e 标记的 AT1R 的探针特异性中性或负性变构配体起作用,但纳米体与正位配体的连接对 Gq 解离和 -arrestin 质膜募集有不同的影响。某些 AngII 类似物的效力增强了 100 倍,一些缀合物表现为部分激动剂,最大功效降低了 5 倍。纳米体连接还使 TRV055 和 TRV056 的信号转导偏向 Gq,表明 AT1R 的 Gq 偏向可以通过与先前阐明的不同的分子机制来调节。竞争放射性配体结合实验和功能测定均表明,正位拮抗剂(血管紧张素受体阻滞剂)作为这些纳米体-肽缀合物的非竞争性抑制剂起作用。这项原理验证研究说明了通过将中性或负性变构药效团掺入双位配体中可以实现的一系列药理学模式。针对线性表位的纳米体可以为此目的提供丰富的变构试剂来源。
在这里,我们通过将血管紧张素 II 或其偏向性类似物连接到表位特异性纳米体(抗体片段)来为表位标记的血管紧张素 II 型 1 受体工程双位(双位)配体。我们的数据表明,纳米体与受体末端的相互作用赋予血管紧张素类似物变构调节剂的特性,并提供了一种增加配体效力、调节最大效应或改变配体偏向的新机制。