Suppr超能文献

通过自调控电化学发光显微镜原位研究单纳米医学载体的蛋白冠形成动力学。

An In Situ Investigation of the Protein Corona Formation Kinetics of Single Nanomedicine Carriers by Self-Regulated Electrochemiluminescence Microscopy.

机构信息

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China.

School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202308950. doi: 10.1002/anie.202308950. Epub 2023 Aug 21.

Abstract

Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy) with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy) and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.

摘要

蛋白质冠广泛存在于生物纳米界面,这是由于蛋白质在生物流体中自然吸附到纳米材料上。除了纳米粒子的强韧特性外,蛋白质冠壳的动力学在很大程度上通过改变界面性质来定义其化学特性。然而,软冠通常是复杂和快速变化的。为了实时监测整个形成过程,我们在这里报告了一种基于 Ru(bpy) 与纳米粒子表面相互作用的自调节电化学发光(ECL)显微镜。因此,在纳米药物载体中加载药物前后,可以原位观察到单个纳米粒子“核”中蛋白质冠的异质性。无标记、光学稳定和动态 ECL 显微镜最大限度地减少了由于纳米粒子尺寸和多分散性变化引起的误解。因此,通过化学工程化的蛋白质冠揭示了蛋白质和纳米粒子特性的协同作用。在比较不同复杂体系和不同纳米药物载体中的蛋白质冠形成动力学后,通过 Ru(bpy) 和多种蛋白质在各种载体表面上的竞争吸附来调节蛋白质冠形成动力学曲线,证明了该技术的通用性和准确性。这项工作对于研究药物传递和靶向癌症治疗中的生物纳米界面具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验