Suppr超能文献

用于在酸性条件下通过氧还原反应生产过氧化氢的硬币双原子催化剂。

CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid.

作者信息

Du Jiannan, Han Guokang, Zhang Wei, Li Lingfeng, Yan Yuqi, Shi Yaoxuan, Zhang Xue, Geng Lin, Wang Zhijiang, Xiong Yueping, Yin Geping, Du Chunyu

机构信息

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.

Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.

出版信息

Nat Commun. 2023 Aug 8;14(1):4766. doi: 10.1038/s41467-023-40467-8.

Abstract

The two-electron oxygen reduction reaction in acid is highly attractive to produce HO, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient HO production in acid. The HO partial current density reaches 1.92 mA cm at 0.65 V in the rotating ring-disk electrode test, while the HO production rate is as high as 9.68 mol g h in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for HO production and other catalytic systems.

摘要

酸性条件下的双电子氧还原反应对于生产HO极具吸引力,HO是一种在各种工业和家庭场景中至关重要的商品化学品,但该反应仍受缓慢反应动力学的阻碍。在此,密度泛函理论计算和原位表征均表明,在双原子CoIn催化剂中,亲氧性的In原子引发了羟基的有利且稳定的吸附,这有效地优化了OOH在相邻Co上的吸附。结果,Co原子上的氧还原转变为双电子途径,以在酸性条件下高效生产HO。在旋转环盘电极测试中,HO的分电流密度在0.65 V时达到1.92 mA cm,而在三相流动池中HO的产率高达9.68 mol g h。此外,CoIn-N-C在长期运行过程中表现出优异的稳定性,验证了CoIn-N-C催化剂的实用性。这项工作为合理设计用于生产HO的活性催化剂及其他催化体系提供了启发性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59c7/10409757/77f7d5a16f1c/41467_2023_40467_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验