School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK.
J R Soc Interface. 2023 Aug;20(205):20230177. doi: 10.1098/rsif.2023.0177. Epub 2023 Aug 9.
With increasing evidence of electroreception in terrestrial arthropods, an understanding of receptor level processes is vital to appreciating the capabilities and limits of this sense. Here, we examine the spatio-temporal sensitivity of mechanoreceptive filiform hairs in detecting electrical fields. We first present empirical data, highlighting the time-varying characteristics of biological electrical signals. After which, we explore how electrically sensitive hairs may respond to such stimuli. The main findings are: (i) oscillatory signals (elicited by wingbeats) influence the spatial sensitivity of hairs, unveiling an inextricable spatio-temporal link; (ii) wingbeat direction modulates spatial sensitivity; (iii) electrical wingbeats can be approximated by sinusoidally modulated DC signals; and (iv) for a moving point charge, maximum sensitivity occurs at a faster timescale than a hair's frequency-based tuning. Our results show that electro-mechanical sensory hairs may capture different spatio-temporal information, depending on an object's movement and wingbeat and in comparison with aero-acoustic stimuli. Crucially, we suggest that electrostatic and aero-acoustic signals may provide distinguishable channels of information for arthropods. Given the pervasiveness of electric fields in nature, our results suggest further study to understand electrostatics in the ecology of arthropods and to reveal unknown ecological relationships and novel interactions between species.
随着越来越多的证据表明陆生节肢动物具有电感受能力,了解受体水平的过程对于理解这种感觉的能力和局限性至关重要。在这里,我们研究了机械感受丝状毛发在检测电场时的时空敏感性。我们首先呈现经验数据,突出生物电信号的时变特征。之后,我们探讨了电敏感毛发如何对这种刺激做出反应。主要发现包括:(i) 振荡信号(由翅膀拍打产生)影响毛发的空间敏感性,揭示了一种不可分割的时空联系;(ii) 翅膀拍打方向调制空间敏感性;(iii) 电翅膀拍打可以用正弦调制的直流信号来近似;(iv) 对于移动点电荷,最大敏感性出现在比毛发基于频率的调谐更快的时间尺度上。我们的结果表明,电机械感觉毛发可以根据物体的运动和翅膀拍打以及与空气声刺激的比较,捕获不同的时空信息。至关重要的是,我们提出静电和空气声信号可能为节肢动物提供可区分的信息通道。鉴于电场在自然界中的普遍性,我们的结果表明需要进一步研究以了解节肢动物生态学中的静电,并揭示物种之间未知的生态关系和新的相互作用。