Suppr超能文献

使用长短期记忆网络从静息态功能磁共振成像数据中表征早期帕金森病

Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network.

作者信息

Guo Xueqi, Tinaz Sule, Dvornek Nicha C

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, United States.

Department of Neurology, Yale School of Medicine, New Haven, CT, United States.

出版信息

Front Neuroimaging. 2022 Jul 13;1:952084. doi: 10.3389/fnimg.2022.952084. eCollection 2022.

Abstract

Parkinson's disease (PD) is a common and complex neurodegenerative disorder with five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with progression of early stage disease would support accurate disease staging, development of new therapies, and objective monitoring of disease progression or treatment response. Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional connectivity (FC) differences and developing biomarkers in PD. While fMRI and FC data have been utilized for diagnosis of PD through application of machine learning approaches such as support vector machine and logistic regression, the characterization of FC changes in early-stage PD has not been investigated. Given the complexity and non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM) network to distinguish the early stages of PD and understand related functional brain changes. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from the Parkinson's Progression Markers Initiative (PPMI), the largest-available public PD dataset. Under a repeated 10-fold stratified cross-validation, the LSTM model reached an accuracy of 71.63%, 13.52% higher than the best traditional machine learning method and 11.56% higher than a CNN model, indicating significantly better robustness and accuracy compared with other machine learning classifiers. Finally, we used the learned LSTM model weights to select the top brain regions that contributed to model prediction and performed FC analyses to characterize functional changes with disease stage and motor impairment to gain better insight into the brain mechanisms of PD.

摘要

帕金森病(PD)是一种常见且复杂的神经退行性疾病,在霍恩和雅尔分级中有五个阶段。随着疾病早期阶段的进展来表征脑功能变化,将有助于准确的疾病分期、新疗法的开发以及对疾病进展或治疗反应的客观监测。功能磁共振成像(fMRI)是揭示帕金森病功能连接(FC)差异和开发生物标志物的一种有前景的工具。虽然通过支持向量机和逻辑回归等机器学习方法的应用,fMRI和FC数据已被用于帕金森病的诊断,但早期帕金森病中FC变化的特征尚未得到研究。鉴于fMRI数据的复杂性和非线性,我们建议使用长短期记忆(LSTM)网络来区分帕金森病的早期阶段,并了解相关的脑功能变化。该研究纳入了帕金森病进展标记物倡议(PPMI)中的84名受试者(2期56名,1期28名),这是最大的可用公开帕金森病数据集。在重复的10折分层交叉验证下,LSTM模型的准确率达到71.63%,比最佳传统机器学习方法高13.52%,比CNN模型高11.56%,表明与其他机器学习分类器相比,其鲁棒性和准确性明显更好。最后,我们使用学习到的LSTM模型权重来选择对模型预测有贡献的顶级脑区,并进行FC分析以表征疾病阶段和运动障碍相关的功能变化,从而更好地洞察帕金森病的脑机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1451/10406199/90b6291b84f9/fnimg-01-952084-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验