Wang Tao, Ding Zenghui, Yang Xianjun, Chen Yanyan, Lu Changhua, Sun Yining
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
School of Computer and Information, Hefei University of Technology, Hefei, China.
Quant Imaging Med Surg. 2024 Sep 1;14(9):6294-6310. doi: 10.21037/qims-24-578. Epub 2024 Aug 17.
Resting-state brain networks represent the interconnectivity of different brain regions during rest. Utilizing brain network analysis methods to model these networks can enhance our understanding of how different brain regions collaborate and communicate without explicit external stimuli. However, analyzing resting-state brain networks faces challenges due to high heterogeneity and noise correlation between subjects. This study proposes a brain structure learning-guided multi-view graph representation learning method to address the limitations of current brain network analysis and improve the diagnostic accuracy (ACC) of mental disorders.
We first used multiple thresholds to generate different sparse levels of brain networks. Subsequently, we introduced graph pooling to optimize the brain network representation by reducing noise edges and data inconsistency, thereby providing more reliable input for subsequent graph convolutional networks (GCNs). Following this, we designed a multi-view GCN to comprehensively capture the complexity and variability of brain structure. Finally, we employed an attention-based adaptive module to adjust the contributions of different views, facilitating their fusion. Considering that the Smith atlas offers superior characterization of resting-state brain networks, we utilized the Smith atlas to construct the graph network.
Experiments on two mental disorder datasets, the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Mexican Cocaine Use Disorders (SUDMEX CONN) dataset, show that our model outperforms the state-of-the-art methods, achieving nearly 75% ACC and 70% area under the receiver operating characteristic curve (AUC) on both datasets.
These findings demonstrate that our method of combining multi-view graph learning and brain structure learning can effectively capture crucial structural information in brain networks while facilitating the acquisition of feature information from diverse perspectives, thereby improving the performance of brain network analysis.
静息态脑网络代表了休息期间不同脑区的互连性。利用脑网络分析方法对这些网络进行建模,可以增强我们对不同脑区在没有明确外部刺激的情况下如何协作和通信的理解。然而,由于个体之间存在高度异质性和噪声相关性,分析静息态脑网络面临挑战。本研究提出一种脑结构学习引导的多视图图表示学习方法,以解决当前脑网络分析的局限性,并提高精神障碍的诊断准确性(ACC)。
我们首先使用多个阈值生成不同稀疏水平的脑网络。随后,我们引入图池化,通过减少噪声边和数据不一致性来优化脑网络表示,从而为后续的图卷积网络(GCN)提供更可靠的输入。在此之后,我们设计了一个多视图GCN来全面捕捉脑结构的复杂性和可变性。最后,我们采用基于注意力的自适应模块来调整不同视图的贡献,促进它们的融合。考虑到史密斯图谱在静息态脑网络表征方面具有优势,我们利用史密斯图谱构建图网络。
在两个精神障碍数据集,即自闭症脑成像数据交换(ABIDE)数据集和墨西哥可卡因使用障碍(SUDMEX CONN)数据集上的实验表明,我们的模型优于现有方法,在两个数据集上均实现了近75%的ACC和70%的受试者工作特征曲线下面积(AUC)。
这些发现表明,我们将多视图图学习与脑结构学习相结合的方法能够有效捕捉脑网络中的关键结构信息,同时便于从不同角度获取特征信息,从而提高脑网络分析的性能。