Suppr超能文献

基于图神经网络提取静息态功能磁共振成像研究中的默认模式网络。

Extracting default mode network based on graph neural network for resting state fMRI study.

作者信息

Wang Donglin, Wu Qiang, Hong Don

机构信息

Program of Computational and Data Science, Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN, United States.

出版信息

Front Neuroimaging. 2022 Sep 7;1:963125. doi: 10.3389/fnimg.2022.963125. eCollection 2022.

Abstract

Functional magnetic resonance imaging (fMRI)-based study of functional connections in the brain has been highlighted by numerous human and animal studies recently, which have provided significant information to explain a wide range of pathological conditions and behavioral characteristics. In this paper, we propose the use of a graph neural network, a deep learning technique called graphSAGE, to investigate resting state fMRI (rs-fMRI) and extract the default mode network (DMN). Comparing typical methods such as seed-based correlation, independent component analysis, and dictionary learning, real data experiment results showed that the graphSAGE is more robust, reliable, and defines a clearer region of interests. In addition, graphSAGE requires fewer and more relaxed assumptions, and considers the single subject analysis and group subjects analysis simultaneously.

摘要

基于功能磁共振成像(fMRI)的大脑功能连接研究最近受到了众多人类和动物研究的关注,这些研究提供了重要信息来解释广泛的病理状况和行为特征。在本文中,我们提出使用一种图神经网络,即一种名为GraphSAGE的深度学习技术,来研究静息态功能磁共振成像(rs-fMRI)并提取默认模式网络(DMN)。与基于种子的相关性、独立成分分析和字典学习等典型方法相比,实际数据实验结果表明,GraphSAGE更稳健、可靠,并且定义了更清晰的感兴趣区域。此外,GraphSAGE需要的假设更少且更宽松,同时考虑了单受试者分析和多受试者分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdea/10406295/f1e4df78fa2c/fnimg-01-963125-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验