Suppr超能文献

利用静息态功能磁共振成像的动态因果建模识别默认模式网络结构。

Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

机构信息

Department of Radiology, UMDNJ-New Jersey Medical School, Newark, NJ, USA.

Department of Radiology, UMDNJ-New Jersey Medical School, Newark, NJ, USA.

出版信息

Neuroimage. 2014 Feb 1;86:53-9. doi: 10.1016/j.neuroimage.2013.07.071. Epub 2013 Aug 6.

Abstract

The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.

摘要

默认模式网络是大脑结构的一部分,当人处于休息状态时,它会显示出更高的神经活动和能量消耗。默认模式网络中的关键区域通过白质纤维追踪和静息状态功能磁共振成像信号的同步性高度相互连接。然而,默认模式网络中的因果信息流仍然知之甚少。本研究使用静息态 fMRI 数据集上的动态因果建模来识别默认模式网络的网络结构。内源性脑波动通过傅立叶级数在 0.01-0.08Hz 的低频带中被明确建模,并且这些傅立叶级数被设置为 DCM 模型的驱动输入。模型比较过程支持这样一种模型,即 MPFC 将信息发送到 PCC,而双侧下顶叶将信息发送到 PCC 和 MPFC。进一步的分析提供了证据表明,内源性连接在右半球可能比左半球更高。这些数据深入了解了 DMN 中每个节点的功能,也验证了 DCM 在静息态 fMRI 数据上的应用。

相似文献

5
Construct validation of a DCM for resting state fMRI.静息态功能磁共振成像中动态因果模型的结构效度验证。
Neuroimage. 2015 Feb 1;106:1-14. doi: 10.1016/j.neuroimage.2014.11.027. Epub 2014 Nov 21.
9
Large-Scale Granger Causal Brain Network based on Resting-State fMRI data.基于静息态 fMRI 数据的大规模 Granger 因果脑网络
Neuroscience. 2020 Jan 15;425:169-180. doi: 10.1016/j.neuroscience.2019.11.006. Epub 2019 Nov 30.

引用本文的文献

2
An integrative model of perseverative thinking.一种强迫性思维的综合模型。
Dialogues Clin Neurosci. 2025 Dec;27(1):34-54. doi: 10.1080/19585969.2025.2481658. Epub 2025 May 23.

本文引用的文献

1
Functional and effective connectivity: a review.功能连接和有效连接:综述。
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
2
Critical comments on dynamic causal modelling.动态因果建模的批判性评论。
Neuroimage. 2012 Feb 1;59(3):2322-9. doi: 10.1016/j.neuroimage.2011.09.025. Epub 2011 Sep 22.
4
Behavioral interpretations of intrinsic connectivity networks.内在连接网络的行为解释。
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.
7
Network discovery with DCM.使用 DCM 进行网络发现。
Neuroimage. 2011 Jun 1;56(3):1202-21. doi: 10.1016/j.neuroimage.2010.12.039. Epub 2010 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验