Suppr超能文献

结合同步加速器X射线衍射、机理建模和机器学习进行激光熔化过程中的地下温度定量分析。

Combining synchrotron X-ray diffraction, mechanistic modeling and machine learning for subsurface temperature quantification during laser melting.

作者信息

Lim Rachel E, Mukherjee Tuhin, Chuang Chihpin, Phan Thien Q, DebRoy Tarasankar, Pagan Darren C

机构信息

Pennsylvania State University, University Park, PA 16802, USA.

Argonne National Laboratory, Lemont, IL 60439, USA.

出版信息

J Appl Crystallogr. 2023 Jul 20;56(Pt 4):1131-1143. doi: 10.1107/S1600576723005198. eCollection 2023 Aug 1.

Abstract

Laser melting, such as that encountered during additive manufacturing, produces extreme gradients of temperature in both space and time, which in turn influence microstructural development in the material. Qualification and model validation of the process itself and the resulting material necessitate the ability to characterize these temperature fields. However, well established means to directly probe the material temperature below the surface of an alloy while it is being processed are limited. To address this gap in characterization capabilities, a novel means is presented to extract subsurface temperature-distribution metrics, with uncertainty, from synchrotron X-ray diffraction measurements to provide quantitative temperature evolution data during laser melting. Temperature-distribution metrics are determined using Gaussian process regression supervised machine-learning surrogate models trained with a combination of mechanistic modeling (heat transfer and fluid flow) and X-ray diffraction simulation. The trained surrogate model uncertainties are found to range from 5 to 15% depending on the metric and current temperature. The surrogate models are then applied to experimental data to extract temperature metrics from an Inconel 625 nickel superalloy wall specimen during laser melting. The maximum temperatures of the solid phase in the diffraction volume through melting and cooling are found to reach the solidus temperature as expected, with the mean and minimum temperatures found to be several hundred degrees less. The extracted temperature metrics near melting are determined to be more accurate because of the lower relative levels of mechanical elastic strains. However, uncertainties for temperature metrics during cooling are increased due to the effects of thermomechanical stress.

摘要

激光熔化,例如在增材制造过程中遇到的情况,会在空间和时间上产生极高的温度梯度,这反过来又会影响材料的微观结构发展。对工艺本身以及最终材料进行鉴定和模型验证需要具备表征这些温度场的能力。然而,在合金加工过程中直接探测其表面以下材料温度的成熟方法有限。为了弥补表征能力方面的这一差距,本文提出了一种新方法,可从同步加速器X射线衍射测量中提取具有不确定性的亚表面温度分布指标,以提供激光熔化过程中的定量温度演变数据。温度分布指标是使用高斯过程回归监督机器学习代理模型确定的,该模型由机械建模(传热和流体流动)和X射线衍射模拟相结合进行训练。根据指标和当前温度,训练后的代理模型不确定性范围为5%至15%。然后将代理模型应用于实验数据,以在激光熔化过程中从因科镍合金625镍基高温合金壁试样中提取温度指标。发现在熔化和冷却过程中衍射体积内固相的最高温度如预期达到固相线温度,而平均温度和最低温度则低几百摄氏度。由于机械弹性应变的相对水平较低,确定在接近熔化时提取的温度指标更准确。然而,由于热机械应力的影响,冷却过程中温度指标的不确定性增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验