Suppr超能文献

利用机器学习对X射线衍射数据中的热机械效应进行去卷积

Deconvoluting thermomechanical effects in X-ray diffraction data using machine learning.

作者信息

Lim Rachel E, Shang Shun Li, Chuang Chihpin, Phan Thien Q, Liu Zi Kui, Pagan Darren C

机构信息

Pennsylvania State University, University Park, PA 16802, USA.

Argonne National Laboratory, Lemont, IL 60439, USA.

出版信息

Acta Crystallogr A Found Adv. 2025 Mar 1;81(Pt 2):137-150. doi: 10.1107/S2053273325000403. Epub 2025 Jan 31.

Abstract

X-ray diffraction is ideal for probing the sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and because of the inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach that uses combinations of physics-based modeling and machine learning to deconvolve thermal and mechanical elastic strains for diffraction data analysis. The method builds on a previous effort to extract thermal strain distribution information from diffraction data. The new approach is applied to extract the evolution of the thermomechanical state during laser melting of an Inconel 625 wall specimen which produces significant residual stress upon cooling. A combination of heat transfer and fluid flow, elasto-plasticity and X-ray diffraction simulations is used to generate training data for machine-learning (Gaussian process regression, GPR) models that map diffracted intensity distributions to underlying thermomechanical strain fields. First-principles density functional theory is used to determine accurate temperature-dependent thermal expansion and elastic stiffness used for elasto-plasticity modeling. The trained GPR models are found to be capable of deconvoluting the effects of thermal and mechanical strains, in addition to providing information about underlying strain distributions, even from complex diffraction patterns with irregularly shaped peaks.

摘要

X射线衍射非常适合在晶体材料复杂或快速热机械加载过程中探测亚表面状态。然而,随着衍射体积因空间展宽而增大,以及由于无法解卷积不同晶格变形机制的影响,挑战也随之出现。在此,我们提出一种新颖的方法,该方法结合基于物理的建模和机器学习来解卷积热弹性应变和机械弹性应变,以进行衍射数据分析。该方法建立在先前从衍射数据中提取热应变分布信息的工作基础之上。这种新方法被应用于提取因科镍合金625壁试样激光熔化过程中的热机械状态演变,该试样在冷却时会产生显著的残余应力。结合传热与流体流动、弹塑性和X射线衍射模拟来生成机器学习(高斯过程回归,GPR)模型的训练数据,这些模型将衍射强度分布映射到潜在的热机械应变场。第一性原理密度泛函理论用于确定用于弹塑性建模的精确的温度相关热膨胀和弹性刚度。结果发现,经过训练的GPR模型不仅能够解卷积热应变和机械应变的影响,还能提供有关潜在应变分布的信息,即使是对于具有不规则形状峰的复杂衍射图样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e837/11873812/ff238ac16e53/a-81-00137-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验