Suppr超能文献

利用自我和非自我连接蛋白支架方法提高聚对苯二甲酸乙二酯降解酶PETase的热稳定性

Thermostability enhancement of polyethylene terephthalate degrading PETase using self- and nonself-ligating protein scaffolding approaches.

作者信息

Sana Barindra, Ding Ke, Siau Jia Wei, Pasula Rupali Reddy, Chee Sharon, Kharel Sharad, Lena Jean-Baptise Henri, Goh Eunice, Rajamani Lakshminarayanan, Lam Yeng Ming, Lim Sierin, Ghadessy John F

机构信息

Disease Intervention Technology Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore.

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological Univeristy, Singapore, Singapore.

出版信息

Biotechnol Bioeng. 2023 Nov;120(11):3200-3209. doi: 10.1002/bit.28523. Epub 2023 Aug 9.

Abstract

Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.

摘要

聚对苯二甲酸乙二酯(PET)水解酶有望实现酶促PET降解以及一次性PET容器的绿色回收利用,而一次性PET容器是全球污染的主要来源。通过酶工程可以充分发挥它们的潜力,使它们对难降解PET底物的活性与大规模经济高效回收相匹配。热稳定性是工业酶非常理想的特性,通常能增强酶的稳健性并显著减少所需用量。迄今为止,大多数工程化PET水解酶的热稳定性都比其亲本酶有所提高。在此,我们报告了使用两种支架策略开发的嗜碱栖热袍菌PET水解酶(IsPETase)的工程化热稳定变体。第一种方法采用SpyCatcher-SpyTag技术使IsPETase共价环化,与天然IsPETase相比,热稳定性提高,但PET底物的周转率降低。第二种方法使用绿色荧光蛋白-纳米抗体融合蛋白(vGFP)作为支架,得到了一种熔解温度为80°C的构建体。当将热稳定PETase变体(FAST PETase)构建到vGFP中时,熔解温度进一步提高到85°C,这是迄今为止报道的源自IsPETase的工程化PET水解酶的最高熔解温度。与IsPETase相比,使用vGFP支架提高热稳定性并未损害对PET的活性。这些截然不同的结果突出了支架选择所带来的潜在拓扑和动态限制,这些限制是酶活性的决定因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验