Elstone Naomi S, Shimizu Karina, Shaw Emily V, Lane Paul D, D'Andrea Lucía, Demé Bruno, Mahmoudi Najet, Rogers Sarah E, Youngs Sarah, Costen Matthew L, McKendrick Kenneth G, Canongia Lopes Jose N, Bruce Duncan W, Slattery John M
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049 001, Portugal.
J Phys Chem B. 2023 Aug 24;127(33):7394-7407. doi: 10.1021/acs.jpcb.3c02647. Epub 2023 Aug 9.
By mixing ionic liquids (ILs), it is possible to fine-tune their bulk and interfacial structure. This alters their physical properties and solvation behavior and is a simple way to prepare a collection of ILs whose properties can be tuned to optimize a specific application. In this study, mixtures of perfluorinated and alkylated ILs have been prepared, and links between composition, properties, and nanostructure have been investigated. These different classes of ILs vary substantially in the flexibility and polarizability of their chains. Thus, a range of useful structural and physical property variations are accessible through mixing that will expand the library of IL mixtures available in an area that to this point has received relatively little attention. In the experiments presented herein, the physical properties and bulk structure of mixtures of 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide [CMIM][TfN] and 1-(1,1,2,2-perfluorooctyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [CMIM-F][TfN] have been prepared. The bulk liquid structure was investigated using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) experiments in combination with atomistic molecular dynamics simulations and the measurement of density and viscosity. We observed that the addition of [CMIM-F][TfN] to [CMIM][TfN] causes changes in the nanostructure of the IL mixtures that are dependent on composition so that variation in the characteristic short-range correlations is observed as a function of composition. Thus, while the length scales associated with the apolar regions (polar non-polar peak─PNPP) increase with the proportion of [CMIM-F][TfN] in the mixtures, perhaps surprisingly given the greater volume of the fluorocarbon chains, the length scale of the charge-ordering peak decreases. Interestingly, consideration of the contact peak shows that its origins are both in the direct anion···cation contact length scale and the nature (and hence volume) of the chains appended to the imidazolium cation.
通过混合离子液体(ILs),可以对其本体和界面结构进行微调。这会改变它们的物理性质和溶剂化行为,并且是制备一系列离子液体的简单方法,这些离子液体的性质可以进行调整以优化特定应用。在本研究中,制备了全氟化和烷基化离子液体的混合物,并研究了组成、性质和纳米结构之间的联系。这些不同类别的离子液体在其链的柔韧性和极化率方面有很大差异。因此,通过混合可以获得一系列有用的结构和物理性质变化,这将扩展在一个到目前为止相对较少受到关注的领域中可用的离子液体混合物库。在本文介绍的实验中,制备了1-甲基-3-辛基咪唑双(三氟甲基磺酰)亚胺[CMIM][TfN]和1-(1,1,2,2-全氟辛基)-3-甲基咪唑双(三氟甲基磺酰)亚胺[CMIM-F][TfN]混合物的物理性质和本体结构。使用小角X射线和中子散射(分别为SAXS和SANS)实验相结合的方法,并结合原子分子动力学模拟以及密度和粘度的测量,对本体液体结构进行了研究。我们观察到,向[CMIM][TfN]中添加[CMIM-F][TfN]会导致离子液体混合物的纳米结构发生变化,这种变化取决于组成,因此可以观察到特征短程相关性随组成的变化。因此,虽然与非极性区域相关的长度尺度(极性-非极性峰─PNPP)随着混合物中[CMIM-F][TfN]的比例增加而增加,但考虑到碳氟链的体积更大,电荷有序峰的长度尺度却减小了,这可能令人惊讶。有趣的是,对接触峰的研究表明,其起源既在于直接的阴离子···阳离子接触长度尺度,也在于连接到咪唑阳离子上的链的性质(以及因此的体积)。