Suppr超能文献

基于电子健康记录的临床研究的开放自然语言处理 (NLP) 框架:使用国家 COVID 队列协作 (N3C) 的案例展示。

An open natural language processing (NLP) framework for EHR-based clinical research: a case demonstration using the National COVID Cohort Collaborative (N3C).

机构信息

Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota, USA.

Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2023 Nov 17;30(12):2036-2040. doi: 10.1093/jamia/ocad134.

Abstract

Despite recent methodology advancements in clinical natural language processing (NLP), the adoption of clinical NLP models within the translational research community remains hindered by process heterogeneity and human factor variations. Concurrently, these factors also dramatically increase the difficulty in developing NLP models in multi-site settings, which is necessary for algorithm robustness and generalizability. Here, we reported on our experience developing an NLP solution for Coronavirus Disease 2019 (COVID-19) signs and symptom extraction in an open NLP framework from a subset of sites participating in the National COVID Cohort (N3C). We then empirically highlight the benefits of multi-site data for both symbolic and statistical methods, as well as highlight the need for federated annotation and evaluation to resolve several pitfalls encountered in the course of these efforts.

摘要

尽管临床自然语言处理 (NLP) 在方法学上取得了新的进展,但在转化研究领域,临床 NLP 模型的采用仍然受到过程异质性和人为因素变化的阻碍。同时,这些因素也极大地增加了在多站点环境中开发 NLP 模型的难度,这对于算法的稳健性和通用性是必要的。在这里,我们报告了在一个开放的 NLP 框架中,从参与国家 COVID 队列 (N3C) 的一部分站点中,为 2019 年冠状病毒病 (COVID-19) 症状和体征提取开发 NLP 解决方案的经验。然后,我们实证强调了多站点数据对符号和统计方法的好处,并强调需要联邦注释和评估来解决这些努力过程中遇到的几个陷阱。

相似文献

引用本文的文献

5
Assertion Detection in Clinical Natural Language Processing using Large Language Models.使用大语言模型进行临床自然语言处理中的断言检测
Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:242-247. doi: 10.1109/ichi61247.2024.00039. Epub 2024 Aug 22.

本文引用的文献

5
The Human Phenotype Ontology in 2021.2021 年人类表型本体论。
Nucleic Acids Res. 2021 Jan 8;49(D1):D1207-D1217. doi: 10.1093/nar/gkaa1043.
7
Clinical concept extraction: A methodology review.临床概念提取:方法学综述。
J Biomed Inform. 2020 Sep;109:103526. doi: 10.1016/j.jbi.2020.103526. Epub 2020 Aug 6.
8
Site engagement for multi-site clinical trials.多中心临床试验的现场参与
Contemp Clin Trials Commun. 2020 Jun 29;19:100608. doi: 10.1016/j.conctc.2020.100608. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验