Suppr超能文献

用于检测全髋关节置换术手术记录中常见数据元素的自然语言处理算法的多中心验证:算法开发与验证

Multicenter Validation of Natural Language Processing Algorithms for the Detection of Common Data Elements in Operative Notes for Total Hip Arthroplasty: Algorithm Development and Validation.

作者信息

Han Peijin, Fu Sunyang, Kolis Julie, Hughes Richard, Hallstrom Brian R, Carvour Martha, Maradit-Kremers Hilal, Sohn Sunghwan, Vydiswaran V G Vinod

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.

Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, United States.

出版信息

JMIR Med Inform. 2022 Aug 31;10(8):e38155. doi: 10.2196/38155.

Abstract

BACKGROUND

Natural language processing (NLP) methods are powerful tools for extracting and analyzing critical information from free-text data. MedTaggerIE, an open-source NLP pipeline for information extraction based on text patterns, has been widely used in the annotation of clinical notes. A rule-based system, MedTagger-total hip arthroplasty (THA), developed based on MedTaggerIE, was previously shown to correctly identify the surgical approach, fixation, and bearing surface from the THA operative notes at Mayo Clinic.

OBJECTIVE

This study aimed to assess the implementability, usability, and portability of MedTagger-THA at two external institutions, Michigan Medicine and the University of Iowa, and provide lessons learned for best practices.

METHODS

We conducted iterative test-apply-refinement processes with three involved sites-the development site (Mayo Clinic) and two deployment sites (Michigan Medicine and the University of Iowa). Mayo Clinic was the primary NLP development site, with the THA registry as the gold standard. The activities at the two deployment sites included the extraction of the operative notes, gold standard development (Michigan: registry data; Iowa: manual chart review), the refinement of NLP algorithms on training data, and the evaluation of test data. Error analyses were conducted to understand language variations across sites. To further assess the model specificity for approach and fixation, we applied the refined MedTagger-THA to arthroscopic hip procedures and periacetabular osteotomy cases, as neither of these operative notes should contain any approach or fixation keywords.

RESULTS

MedTagger-THA algorithms were implemented and refined independently for both sites. At Michigan, the study comprised THA-related notes for 2569 patient-date pairs. Before model refinement, MedTagger-THA algorithms demonstrated excellent accuracy for approach (96.6%, 95% CI 94.6%-97.9%) and fixation (95.7%, 95% CI 92.4%-97.6%). These results were comparable with internal accuracy at the development site (99.2% for approach and 90.7% for fixation). Model refinement improved accuracies slightly for both approach (99%, 95% CI 97.6%-99.6%) and fixation (98%, 95% CI 95.3%-99.3%). The specificity of approach identification was 88.9% for arthroscopy cases, and the specificity of fixation identification was 100% for both periacetabular osteotomy and arthroscopy cases. At the Iowa site, the study comprised an overall data set of 100 operative notes (50 training notes and 50 test notes). MedTagger-THA algorithms achieved moderate-high performance on the training data. After model refinement, the model achieved high performance for approach (100%, 95% CI 91.3%-100%), fixation (98%, 95% CI 88.3%-100%), and bearing surface (92%, 95% CI 80.5%-97.3%).

CONCLUSIONS

High performance across centers was achieved for the MedTagger-THA algorithms, demonstrating that they were sufficiently implementable, usable, and portable to different deployment sites. This study provided important lessons learned during the model deployment and validation processes, and it can serve as a reference for transferring rule-based electronic health record models.

摘要

背景

自然语言处理(NLP)方法是从自由文本数据中提取和分析关键信息的强大工具。MedTaggerIE是一个基于文本模式进行信息提取的开源NLP管道,已广泛应用于临床记录的标注。基于MedTaggerIE开发的基于规则的系统MedTagger-全髋关节置换术(THA),先前已被证明能够从梅奥诊所的THA手术记录中正确识别手术入路、固定方式和承重面。

目的

本研究旨在评估MedTagger-THA在密歇根大学医学中心和爱荷华大学这两个外部机构的可实施性、可用性和可移植性,并总结最佳实践经验教训。

方法

我们在三个参与站点——开发站点(梅奥诊所)和两个部署站点(密歇根大学医学中心和爱荷华大学)进行了迭代测试-应用-优化过程。梅奥诊所是主要的NLP开发站点,以THA登记册作为金标准。两个部署站点的活动包括提取手术记录、开发金标准(密歇根:登记数据;爱荷华:人工病历审查)、在训练数据上优化NLP算法以及评估测试数据。进行错误分析以了解不同站点之间的语言差异。为了进一步评估该模型对手术入路和固定方式的特异性,我们将优化后的MedTagger-THA应用于关节镜髋关节手术和髋臼周围截骨病例,因为这两种手术记录都不应包含任何手术入路或固定方式的关键词。

结果

MedTagger-THA算法在两个站点分别独立实施和优化。在密歇根大学,该研究包括2569个患者-日期对的THA相关记录。在模型优化之前,MedTagger-THA算法在手术入路(96.6%,95%CI 94.6%-97.9%)和固定方式(95.7%,95%CI 92.4%-97.6%)方面表现出优异的准确性。这些结果与开发站点的内部准确性(手术入路为99.2%,固定方式为90.7%)相当。模型优化后,手术入路(99%,95%CI 97.6%-99.6%)和固定方式(98%,95%CI 95.3%-99.3%)的准确性略有提高。关节镜检查病例中手术入路识别的特异性为88.9%,髋臼周围截骨和关节镜检查病例中固定方式识别的特异性均为100%。在爱荷华站点,该研究包括100份手术记录的总体数据集(50份训练记录和50份测试记录)。MedTagger-THA算法在训练数据上表现出中高水平的性能。模型优化后,该模型在手术入路(100%,95%CI 91.3%-100%)、固定方式(98%,95%CI 88.3%-100%)和承重面(92%,95%CI 80.5%-97.3%)方面表现出高性能。

结论

MedTagger-THA算法在各中心均实现了高性能,表明它们在不同部署站点具有足够的可实施性、可用性和可移植性。本研究提供了模型部署和验证过程中的重要经验教训,可为基于规则的电子健康记录模型的转移提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85e0/9475406/24f73bf08c2f/medinform_v10i8e38155_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验