Suppr超能文献

可见光驱动 ZnO/FeO 磁性纳米颗粒用于敌百虫解毒:响应面法-BBD 模型的光催化优化过程。

Visible light-driven ZnO/FeO magnetic nanoparticles for detoxification of diazinon: the photocatalytic optimization process with RSM-BBD model.

机构信息

Department of Environmental Sciences and Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran.

Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.

出版信息

Environ Sci Pollut Res Int. 2023 Sep;30(42):95634-95647. doi: 10.1007/s11356-023-29024-4. Epub 2023 Aug 9.

Abstract

Today, diazinon is one of the most widely used organophosphorus pesticides, whose widespread use can cause many ecological and biological risks. In this research, a magnetic ZnO/FeO nanoparticle was used to investigate the photocatalytic degradation of diazinon. Sol-gel synthesis was used to create the nanoparticle, which was then characterized using XRD, FTIR, FESEM, VSM, and XPS techniques. The design of photocatalytic degradation experiments was done using the response surface method and the Box-Behnken design model. The investigated parameters include pH, nanoparticle concentration, diazinon concentration, and irradiation time. The characterization of the ZnO/FeO nanoparticle showed well-formed crystalline phases and a cubic spinel structure. Additionally, the shape of the nanoparticle is almost uniform and spherical. The FT-IR spectrum also confirmed the presence of all functional groups related to ZnO and FeO in the ZnO/FeO nanoparticles structure. The synthesized nanocomposite has superparamagnetic properties and a very small coercive field, making it easily recyclable, according to a VSM analysis. XPS results also showed the presence of Fe (Fe 2p and Fe 2p), Zn (Zn 2p and Zn 2p), oxygen (O1s), and weak carbon (C1s) peaks in the ZnO/FeO structure. The results of the photocatalytic optimization experiments showed that the highest efficiency of diazinon toxin degradation is 99.3% under the conditions of pH 7, diazinon initial concentration of 10 mg/L, nanoparticle concentration of 1 g/L, and a contact time of 90 min. This result is very close to the BBD model's predicted removal efficiency under optimal conditions (100%). As a result, the ZnO/FeO nanocomposite can produce active free radicals through UV radiation, and these radicals can successfully remove diazinon under actual conditions.

摘要

如今,二嗪磷是使用最广泛的有机磷农药之一,其广泛使用会带来诸多生态和生物风险。在这项研究中,使用磁性 ZnO/FeO 纳米粒子来研究二嗪磷的光催化降解。采用溶胶-凝胶法合成纳米粒子,并用 XRD、FTIR、FESEM、VSM 和 XPS 技术对其进行了表征。使用响应面法和 Box-Behnken 设计模型设计了光催化降解实验的设计。研究的参数包括 pH 值、纳米粒子浓度、二嗪磷浓度和照射时间。对 ZnO/FeO 纳米粒子的表征表明,其具有良好的结晶相和立方尖晶石结构。此外,纳米粒子的形状几乎均匀且呈球形。FT-IR 光谱也证实了 ZnO/FeO 纳米粒子结构中存在与 ZnO 和 FeO 相关的所有功能基团。根据 VSM 分析,合成的纳米复合材料具有超顺磁性和非常小的矫顽力,因此易于回收利用。XPS 结果还表明,在 ZnO/FeO 结构中存在 Fe(Fe 2p 和 Fe 2p)、Zn(Zn 2p 和 Zn 2p)、氧(O1s)和弱碳(C1s)峰。光催化优化实验的结果表明,在 pH 值为 7、二嗪磷初始浓度为 10mg/L、纳米粒子浓度为 1g/L 和接触时间为 90min 的条件下,二嗪磷毒素的降解效率最高可达 99.3%。这一结果非常接近 BBD 模型在最佳条件下(100%)预测的去除效率。因此,ZnO/FeO 纳米复合材料可以通过紫外辐射产生活性自由基,这些自由基可以在实际条件下成功去除二嗪磷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验