Suppr超能文献

基于CT和MRI的影像组学模型对直肠癌侧方淋巴结转移的预测诊断价值

Diagnostic value of a radiomics model based on CT and MRI for prediction of lateral lymph node metastasis of rectal cancer.

作者信息

Yang Hongjie, Jiang Peishi, Dong Longchun, Li Peng, Sun Yi, Zhu Siwei

机构信息

Nankai University, Tianjin, 300071, China.

The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.

出版信息

Updates Surg. 2023 Dec;75(8):2225-2234. doi: 10.1007/s13304-023-01618-0. Epub 2023 Aug 9.

Abstract

This study aimed to develop a radiomics model for predicting lateral lymph node (LLN) metastasis in rectal cancer patients using MR-T2WI and CT images, and assess its clinical value. This prospective study included rectal cancer patients with complete MR-T2WI and portal enhanced CT images who underwent LLN dissection at Tianjin Union Medical Center between June 2017 and November 2022. Primary lesions and LLN were segmented using 3D slicer. Radiomics features were extracted from the region of interest using pyradiomics in Python. Least absolute shrinkage and selection operator algorithm and backward stepwise regression were employed for feature selection. Three LLN metastasis radiomics prediction models were established via multivariable logistic regression analysis. The performance of the model was evaluated using receiver operating characteristic curve analysis, and the area under the curve (AUC), sensitivity, specificity were calculated for the training, validation, and test sets. A nomogram was constructed for visualization, and decision curve analysis (DCA) was performed to evaluate clinical value. We included 94 eligible patients in the analysis. For each patient, we extracted a total of 1344 radiomics features. The CT combined with MR-T2WI model had the highest AUC for all sets compared to CT and MR-T2WI models. AUC values for the CT combined with MR-T2WI model in the training, validation, and test sets were 0.957, 0.901, and 0.936, respectively. DCA revealed high prediction value for the combined MR-T2WI and CT model. A radiomics model based on CT and MR-T2WI data effectively predicted LLN metastasis in rectal cancer patients preoperatively.

摘要

本研究旨在利用MR-T2WI和CT图像开发一种用于预测直肠癌患者侧方淋巴结(LLN)转移的影像组学模型,并评估其临床价值。这项前瞻性研究纳入了2017年6月至2022年11月期间在天津医科大学总医院接受LLN清扫术且有完整MR-T2WI和门静脉增强CT图像的直肠癌患者。使用3D Slicer对原发灶和LLN进行分割。利用Python中的pyradiomics从感兴趣区域提取影像组学特征。采用最小绝对收缩和选择算子算法以及向后逐步回归进行特征选择。通过多变量逻辑回归分析建立了三个LLN转移影像组学预测模型。使用受试者工作特征曲线分析评估模型性能,并计算训练集、验证集和测试集的曲线下面积(AUC)、敏感性和特异性。构建列线图进行可视化,并进行决策曲线分析(DCA)以评估临床价值。我们纳入了94例符合条件的患者进行分析。对于每位患者,我们共提取了1344个影像组学特征。与CT和MR-T2WI模型相比,CT联合MR-T2WI模型在所有数据集中的AUC最高。CT联合MR-T2WI模型在训练集、验证集和测试集中的AUC值分别为0.957、0.901和0.936。DCA显示MR-T2WI和CT联合模型具有较高的预测价值。基于CT和MR-T2WI数据的影像组学模型可有效术前预测直肠癌患者的LLN转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验