Fukuda Masahiro, Islam M Saidul, Shimizu Ryo, Nassar Hesham, Rabin Nurun Nahar, Takahashi Yukie, Sekine Yoshihiro, Lindoy Leonard F, Fukuda Takaichi, Ikeda Terumasa, Hayami Shinya
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
ACS Appl Nano Mater. 2021 Oct 14;4(11):11881-11887. doi: 10.1021/acsanm.1c02446. eCollection 2021 Nov 26.
The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcriptionpolymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 μg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)驱动的感染迅速传播,这对全球健康构成了终极挑战,因此制定有效的预防和/或减轻其影响的策略至关重要。在当前的研究中,我们对使用氧化石墨烯(GO)来了解SARS-CoV-2的灭活途径进行了深入调查。我们重点研究了GO纳米片对三种SARS-CoV-2毒株的抗病毒作用:武汉株、B.1.1.7(英国变种)和P.1(巴西变种)。噬斑测定和实时逆转录聚合酶链反应(RT-PCR)表明,与GO(100μg/mL)分别孵育1分钟和60分钟后,上清液中50%和98%的病毒可以被清除。透射电子显微镜(TEM)分析和蛋白质(刺突(S)蛋白和核衣壳(N)蛋白)分解评估证实了两步病毒灭活机制,该机制包括:(i)带正电荷的SARS-CoV-2刺突吸附在带负电荷的GO表面;(ii)通过病毒蛋白分解使GO表面的SARS-CoV-2中和/灭活。由于SARS-CoV-2进入人体细胞需要S蛋白与人血管紧张素转换酶2(ACE2)相互作用,因此使用GO对S蛋白造成的损伤使其成为抑制SARS-CoV-2全球传播的潜在候选物。具体而言,我们的研究结果为使用GO纳米片构建有效的抗SARS-CoV-2口罩提供了可能性,这对预防病毒传播可能会有很大帮助。此外,由于表面污染在SARS-CoV-2传播中可能很严重,基于GO纳米片开发高效的抗SARS-CoV-2防护表面/涂层,通过使用基于GO的无纺布、过滤器等,在控制病毒传播方面可能会发挥重要作用。