IEEE Trans Biomed Eng. 2024 Jan;71(1):355-366. doi: 10.1109/TBME.2023.3303445. Epub 2023 Dec 22.
We present the development of a non-contrast multi-parametric magnetic resonance (MPMR) imaging biomarker to assess treatment outcomes for magnetic resonance-guided focused ultrasound (MRgFUS) ablations of localized tumors. Images obtained immediately following MRgFUS ablation were inputs for voxel-wise supervised learning classifiers, trained using registered histology as a label for thermal necrosis.
VX2 tumors in New Zealand white rabbits quadriceps were thermally ablated using an MRgFUS system under 3 T MRI guidance. Animals were re-imaged three days post-ablation and euthanized. Histological necrosis labels were created by 3D registration between MR images and digitized H&E segmentations of thermal necrosis to enable voxel-wise classification of necrosis. Supervised MPMR classifier inputs included maximum temperature rise, cumulative thermal dose (CTD), post-FUS differences in T2-weighted images, and apparent diffusion coefficient, or ADC, maps. A logistic regression, support vector machine, and random forest classifier were trained in red a leave-one-out strategy in test data from four subjects.
In the validation dataset, the MPMR classifiers achieved higher recall and Dice than a clinically adopted 240 cumulative equivalent minutes at 43 C (CEM ) threshold (0.43) in all subjects. The average Dice scores of overlap with the registered histological label for the logistic regression (0.63) and support vector machine (0.63) MPMR classifiers were within 6% of the acute contrast-enhanced non-perfused volume (0.67).
Voxel-wise registration of MPMR data to histological outcomes facilitated supervised learning of an accurate non-contrast MR biomarker for MRgFUS ablations in a rabbit VX2 tumor model.
我们提出了一种非对比多参数磁共振(MPMR)成像生物标志物的开发,以评估磁共振引导聚焦超声(MRgFUS)消融局部肿瘤的治疗效果。MRgFUS 消融后立即获得的图像是体素监督学习分类器的输入,这些分类器使用注册的组织学作为热坏死的标签进行训练。
在 3T MRI 引导下,使用 MRgFUS 系统对新西兰白兔四头肌中的 VX2 肿瘤进行热消融。动物在消融后三天进行再次成像并安乐死。通过 MR 图像和热坏死的数字化 H&E 分割之间的 3D 配准创建坏死的组织学标签,以实现坏死的体素分类。监督 MPMR 分类器的输入包括最大温升、累积热剂量(CTD)、FUS 后 T2 加权图像差异和表观扩散系数(ADC)图。在来自四个受试者的测试数据中,采用逻辑回归、支持向量机和随机森林分类器进行红色的留一交叉验证策略训练。
在验证数据集,在所有受试者中,MPMR 分类器的召回率和 Dice 评分均高于临床上采用的 240 个 43°C 时的 240 个累积等效分钟(CEM)阈值(0.43)。逻辑回归(0.63)和支持向量机(0.63)MPMR 分类器与注册组织学标签的重叠平均 Dice 评分与急性对比增强无灌注体积(0.67)相差 6%以内。
MPMR 数据与组织学结果的体素配准促进了基于兔 VX2 肿瘤模型的 MRgFUS 消融的准确非对比 MR 生物标志物的监督学习。