Suppr超能文献

使用多参数磁共振成像预测聚焦超声治疗的疗效

Treatment efficacy prediction of focused ultrasound therapies using multi-parametric magnetic resonance imaging.

作者信息

Singh Amanpreet, Adams-Tew Samuel, Johnson Sara, Odeen Henrik, Shea Jill, Johnson Audrey, Day Lorena, Pessin Alissa, Payne Allison, Joshi Sarang

机构信息

University of Utah.

出版信息

Cancer Prev Detect Interv (2024). 2025;15199:190-199. doi: 10.1007/978-3-031-73376-5_18. Epub 2024 Oct 9.

Abstract

Magnetic resonance guided focused ultrasound (MRgFUS) is one of the most attractive emerging minimally invasive procedures for breast cancer, which induces localized hyperthermia, resulting in tumor cell death. Accurately assessing the post-ablation viability of all treated tumor tissue and surrounding margins immediately after MRgFUS thermal therapy residual tumor tissue is essential for evaluating treatment efficacy. While both thermal and vascular MRI-derived biomarkers are currently used to assess treatment efficacy, currently, no adequately accurate methods exist for the in vivo determination of tissue viability during treatment. The non-perfused volume (NPV) acquired three or more days following MRgFUS thermal ablation treatment is most correlated with the gold standard of histology. However, its delayed timing impedes real-time guidance for the treating clinician during the procedure. We present a robust deep-learning framework that leverages multiparametric MR imaging acquired during treatment to predict treatment efficacy. The network uses qualtitative T1, T2 weighted images and MR temperature image derived metrics to predict the three day post-ablation NPV. To validate the proposed approach, an ablation study was conducted on a dataset (N=6) of VX2 tumor model rabbits that had undergone MRgFUS ablation. Using a deep learning framework, we evaluated which of the acquired MRI inputs were most predictive of treatment efficacy as compared to the expert radiologist annotated 3 day post-treatment images.

摘要

磁共振引导聚焦超声(MRgFUS)是最具吸引力的新兴乳腺癌微创治疗方法之一,它可诱导局部热疗,导致肿瘤细胞死亡。在MRgFUS热疗后,准确评估所有治疗的肿瘤组织以及周围切缘的消融后活力对于评估治疗效果至关重要。虽然目前热磁共振成像和血管磁共振成像衍生的生物标志物都用于评估治疗效果,但目前还没有足够准确的方法在治疗过程中对组织活力进行体内测定。MRgFUS热消融治疗后三天或更长时间获得的无灌注体积(NPV)与组织学金标准相关性最高。然而,其延迟的时间妨碍了治疗过程中临床医生的实时指导。我们提出了一个强大的深度学习框架,该框架利用治疗期间获取的多参数磁共振成像来预测治疗效果。该网络使用定性T1、T2加权图像以及磁共振温度图像衍生的指标来预测消融后三天的NPV。为了验证所提出的方法,我们对一组接受MRgFUS消融的VX2肿瘤模型兔数据集(N=6)进行了消融研究。使用深度学习框架,我们评估了与专家放射科医生标注的治疗后三天图像相比,所获取的哪些磁共振成像输入对治疗效果的预测性最强。

相似文献

本文引用的文献

4
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
IDiff: irrotational diffeomorphisms for computational anatomy.IDiff:用于计算解剖学的无旋微分同胚
Inf Process Med Imaging. 2013;23:754-65. doi: 10.1007/978-3-642-38868-2_63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验