文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SARS-CoV-2 mRNA 脂质纳米颗粒疫苗的高通量制造。

Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303567120. doi: 10.1073/pnas.2303567120. Epub 2023 Aug 9.


DOI:10.1073/pnas.2303567120
PMID:37556502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10438381/
Abstract

Lipid nanoparticles (LNPs) are a potent delivery technology that have made it possible for the recent clinical breakthroughs in mRNA therapeutics and vaccines. A key challenge to the broader implementation of mRNA therapeutics and vaccines is the development of technology to produce precisely defined LNP formulations, with throughput that can scale from discovery to commercial manufacturing and meet the stringent manufacturing standards of the pharmaceutical industry. To address these challenges, we have developed a microfluidic chip that incorporates 1×, 10×, or 256× LNP-generating units that achieve scalable production rates of up to 17 L/h of precisely defined LNPs. Using these chips, we demonstrate that LNP physical properties and potency in vivo are unchanged as throughput is scaled. Our chips are fabricated out of silicon and glass substrates, which have excellent solvent compatibility, compatibility with pharmaceutical manufacturing, and can be fully reset and reused. SARS-CoV-2 mRNA-LNP vaccines formulated by our chips triggered potent antibody responses in a preclinical study. These results demonstrate the feasibility of directly translating microfluidic-generated LNPs to the scale necessary for commercial production.

摘要

脂质纳米颗粒 (LNPs) 是一种强大的递送技术,使得 mRNA 疗法和疫苗的近期临床突破成为可能。mRNA 疗法和疫苗更广泛应用的一个关键挑战是开发能够生产精确定义的 LNP 制剂的技术,其通量能够从发现扩展到商业生产,并满足制药行业严格的制造标准。为了解决这些挑战,我们开发了一种微流控芯片,该芯片包含 1×、10× 或 256× 的 LNP 生成单元,可实现高达 17 L/h 的精确定义的 LNPs 的可扩展生产速率。使用这些芯片,我们证明了 LNP 的物理性质和体内效力在通量扩大时保持不变。我们的芯片由硅和玻璃基板制造而成,具有出色的溶剂兼容性、与药物制造的兼容性,并且可以完全重置和重复使用。我们的芯片制备的 SARS-CoV-2 mRNA-LNP 疫苗在临床前研究中引发了强烈的抗体反应。这些结果表明,直接将微流控生成的 LNP 转化为商业生产所需的规模是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/c701d0407212/pnas.2303567120fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/21f89981a465/pnas.2303567120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/da56302d6803/pnas.2303567120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/b5f1ae574236/pnas.2303567120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/570d7d4f768c/pnas.2303567120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/cab8552c072f/pnas.2303567120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/c701d0407212/pnas.2303567120fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/21f89981a465/pnas.2303567120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/da56302d6803/pnas.2303567120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/b5f1ae574236/pnas.2303567120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/570d7d4f768c/pnas.2303567120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/cab8552c072f/pnas.2303567120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a08/10438381/c701d0407212/pnas.2303567120fig06.jpg

相似文献

[1]
Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines.

Proc Natl Acad Sci U S A. 2023-8-15

[2]
Current Status and Future Perspectives on MRNA Drug Manufacturing.

Mol Pharm. 2022-4-4

[3]
Chemistry of Lipid Nanoparticles for RNA Delivery.

Acc Chem Res. 2022-1-4

[4]
Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device.

Nano Lett. 2021-7-14

[5]
3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.

Lab Chip. 2024-1-17

[6]
A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab.

Methods Mol Biol. 2024

[7]
Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after Intramuscular Injection.

Mol Pharm. 2023-8-7

[8]
From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.

Acta Biomater. 2021-9-1

[9]
Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.

Expert Opin Drug Deliv. 2022-10

[10]
Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.

Eur J Pharm Sci. 2022-9-1

引用本文的文献

[1]
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy.

Biosensors (Basel). 2025-8-4

[2]
Viral and nonviral nanocarriers for CRISPR-based gene editing.

Nano Res. 2024-10

[3]
Thermoreversibly assembled polymersomes for highly efficient loading, processing and delivery of protein and siRNA biologics.

Nat Biomed Eng. 2025-8-6

[4]
Applications of nanoparticles in CAR-T cell therapy: non-viral manufacturing, enhancing in vivo function, and in vivo generation of CAR-T cells.

Med Oncol. 2025-7-26

[5]
Automated and parallelized microfluidic generation of large and precisely-defined lipid nanoparticle libraries.

bioRxiv. 2025-5-29

[6]
Immune Modulation with Oral DNA/RNA Nanoparticles.

Pharmaceutics. 2025-5-4

[7]
Recent Advances in mRNA Delivery Systems for Cancer Therapy.

Adv Sci (Weinh). 2025-8

[8]
Halting Recombinant Adeno-Associated Virus Transgene Expression Using mRNA-Lipid Nanoparticle-Delivered Meganucleases.

Hum Gene Ther. 2025-6

[9]
Tissue Engineering and Regenerative Medicine: Perspectives and Challenges.

MedComm (2020). 2025-4-24

[10]
Using aptamers for targeted delivery of RNA therapies.

Mol Ther. 2025-4-2

本文引用的文献

[1]
Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing.

J Vis Exp. 2023-1-20

[2]
Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery.

Nat Protoc. 2023-1

[3]
Payload distribution and capacity of mRNA lipid nanoparticles.

Nat Commun. 2022-9-23

[4]
Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production.

Biomicrofluidics. 2022-3-17

[5]
An ionizable lipid toolbox for RNA delivery.

Nat Commun. 2021-12-13

[6]
Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses.

Immunity. 2021-12-14

[7]
Principles for designing an optimal mRNA lipid nanoparticle vaccine.

Curr Opin Biotechnol. 2022-2

[8]
Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines.

Vaccines (Basel). 2021-9-17

[9]
Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook.

Appl Phys Rev. 2021-9

[10]
Lipid nanoparticles for mRNA delivery.

Nat Rev Mater. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索