Suppr超能文献

采用并行化微流控装置进行可扩展的 mRNA 和 siRNA 脂质纳米颗粒生产。

Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Nano Lett. 2021 Jul 14;21(13):5671-5680. doi: 10.1021/acs.nanolett.1c01353. Epub 2021 Jun 30.

Abstract

A major challenge to advance lipid nanoparticles (LNPs) for RNA therapeutics is the development of formulations that can be produced reliably across the various scales of drug development. Microfluidics can generate LNPs with precisely defined properties, but have been limited by challenges in scaling throughput. To address this challenge, we present a scalable, parallelized microfluidic device (PMD) that incorporates an array of 128 mixing channels that operate simultaneously. The PMD achieves a >100× production rate compared to single microfluidic channels, without sacrificing desirable LNP physical properties and potency typical of microfluidic-generated LNPs. In mice, we show superior delivery of LNPs encapsulating either Factor VII siRNA or luciferase-encoding mRNA generated using a PMD compared to conventional mixing, with a 4-fold increase in hepatic gene silencing and 5-fold increase in luciferase expression, respectively. These results suggest that this PMD can generate scalable and reproducible LNP formulations needed for emerging clinical applications, including RNA therapeutics and vaccines.

摘要

推进用于 RNA 治疗的脂质纳米颗粒 (LNP) 的主要挑战是开发可在药物开发的各种规模上可靠生产的制剂。微流控技术可以生成具有精确定义特性的 LNPs,但由于通量扩展方面的挑战而受到限制。为了解决这一挑战,我们提出了一种可扩展的、并行的微流控设备 (PMD),该设备包含一个 128 个混合通道的阵列,这些通道可以同时运行。与单个微流控通道相比,PMD 的产量提高了 >100 倍,而不会牺牲微流控生成的 LNPs 典型的理想 LNP 物理性质和效力。在小鼠中,我们发现使用 PMD 包封的 Factor VII siRNA 或编码 luciferase 的 mRNA 的 LNP 的递呈优于常规混合,分别导致肝基因沉默增加 4 倍和 luciferase 表达增加 5 倍。这些结果表明,这种 PMD 可以生成用于新兴临床应用(包括 RNA 治疗和疫苗)的可扩展且可重复的 LNP 制剂。

相似文献

4
Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines.SARS-CoV-2 mRNA 脂质纳米颗粒疫苗的高通量制造。
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303567120. doi: 10.1073/pnas.2303567120. Epub 2023 Aug 9.
7
Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.微流控技术生产用于疫苗应用的载 mRNA 脂质纳米粒。
Expert Opin Drug Deliv. 2022 Oct;19(10):1381-1395. doi: 10.1080/17425247.2022.2135502. Epub 2022 Oct 20.

引用本文的文献

6
On-Chip De Novo Production of mRNA Vaccine in Lipid Nanoparticles.脂质纳米颗粒中mRNA疫苗的片上从头生产
Small. 2025 Aug;21(32):e2500114. doi: 10.1002/smll.202500114. Epub 2025 Jun 23.

本文引用的文献

1
Microfluidic formulation of nanoparticles for biomedical applications.用于生物医学应用的纳米颗粒的微流体制备。
Biomaterials. 2021 Jul;274:120826. doi: 10.1016/j.biomaterials.2021.120826. Epub 2021 Apr 26.
2
Lipid Nanoparticle-Mediated Delivery of mRNA Therapeutics and Vaccines.脂质纳米颗粒介导的mRNA治疗药物和疫苗递送
Trends Mol Med. 2021 Jun;27(6):616-617. doi: 10.1016/j.molmed.2021.03.003. Epub 2021 Apr 6.
4
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.mRNA-1273 新型冠状病毒疫苗的有效性和安全性。
N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. Epub 2020 Dec 30.
6
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.BNT162b2 mRNA 新冠病毒疫苗的安全性和有效性。
N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验