Suppr超能文献

美国成年人尿液生物标志物中私人水井和社区供水系统砷和铀的贡献:“强健心脏研究”和“动脉粥样硬化多民族研究”。

Contribution of arsenic and uranium in private wells and community water systems to urinary biomarkers in US adults: The Strong Heart Study and the Multi-Ethnic Study of Atherosclerosis.

机构信息

Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.

U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA.

出版信息

J Expo Sci Environ Epidemiol. 2024 Jan;34(1):77-89. doi: 10.1038/s41370-023-00586-2. Epub 2023 Aug 9.

Abstract

BACKGROUND

Chronic exposure to inorganic arsenic (As) and uranium (U) in the United States (US) occurs from unregulated private wells and federally regulated community water systems (CWSs). The contribution of water to total exposure is assumed to be low when water As and U concentrations are low.

OBJECTIVE

We examined the contribution of water As and U to urinary biomarkers in the Strong Heart Family Study (SHFS), a prospective study of American Indian communities, and the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective study of racially/ethnically diverse urban U.S. communities.

METHODS

We assigned residential zip code-level estimates in CWSs (µg/L) and private wells (90th percentile probability of As >10 µg/L) to up to 1485 and 6722 participants with dietary information and urinary biomarkers in the SHFS (2001-2003) and MESA (2000-2002; 2010-2011), respectively. Urine As was estimated as the sum of inorganic and methylated species, and urine U was total uranium. We used linear mixed-effects models to account for participant clustering and removed the effect of dietary sources via regression adjustment.

RESULTS

The median (interquartile range) urine As was 5.32 (3.29, 8.53) and 6.32 (3.34, 12.48) µg/L for SHFS and MESA, respectively, and urine U was 0.037 (0.014, 0.071) and 0.007 (0.003, 0.018) µg/L. In a meta-analysis across both studies, urine As was 11% (95% CI: 3, 20%) higher and urine U was 35% (5, 73%) higher per twofold higher CWS As and U, respectively. In the SHFS, zip-code level factors such as private well and CWS As contributed 46% of variation in urine As, while in MESA, zip-code level factors, e.g., CWS As and U, contribute 30 and 49% of variation in urine As and U, respectively.

IMPACT STATEMENT

We found that water from unregulated private wells and regulated CWSs is a major contributor to urinary As and U (an estimated measure of internal dose) in both rural, American Indian populations and urban, racially/ethnically diverse populations nationwide, even at levels below the current regulatory standard. Our findings indicate that additional drinking water interventions, regulations, and policies can have a major impact on reducing total exposures to As and U, which are linked to adverse health effects even at low levels.

摘要

背景

在美国,由于不受监管的私人水井和联邦监管的社区供水系统(CWS)的存在,人们会慢性接触无机砷(As)和铀(U)。当水中的 As 和 U 浓度较低时,人们认为水对总暴露的贡献较低。

目的

我们在 Strong Heart Family Study(SHFS)和 Multi-Ethnic Study of Atherosclerosis(MESA)中检查了水中的 As 和 U 对尿生物标志物的贡献,SHFS 是一项针对美国印第安人社区的前瞻性研究,MESA 是一项针对美国城市种族/族裔多样化社区的前瞻性研究。

方法

我们将 CWS(µg/L)和私人水井(90%概率砷含量 >10 µg/L)的住宅邮政编码级别估计值分配给 SHFS(2001-2003 年)和 MESA(2000-2002 年;2010-2011 年)中最多 1485 名和 6722 名有饮食信息和尿生物标志物的参与者。尿 As 被估计为无机和甲基化物种的总和,尿 U 是总铀。我们使用线性混合效应模型来解释参与者的聚类,并通过回归调整去除饮食来源的影响。

结果

SHFS 和 MESA 的中位(四分位间距)尿 As 分别为 5.32(3.29,8.53)和 6.32(3.34,12.48)µg/L,尿 U 分别为 0.037(0.014,0.071)和 0.007(0.003,0.018)µg/L。在两项研究的荟萃分析中,CWS 的 As 和 U 每增加两倍,尿 As 分别增加 11%(95%CI:3,20%),尿 U 分别增加 35%(5,73%)。在 SHFS 中,邮政编码水平因素,如私人水井和 CWS 的 As,对尿 As 的变异有 46%的贡献,而在 MESA 中,邮政编码水平因素,如 CWS 的 As 和 U,对尿 As 和 U 的变异分别有 30%和 49%的贡献。

结论

我们发现,来自不受监管的私人水井和受监管的 CWS 的水是农村印第安人群体和全国城市种族/族裔多样化人群中尿 As 和 U(内暴露剂量的估计值)的主要来源,即使在低于当前监管标准的水平下也是如此。我们的研究结果表明,增加饮用水干预措施、法规和政策可以对减少 As 和 U 的总暴露量产生重大影响,因为即使在低水平下,As 和 U 也与不良健康影响有关。

相似文献

引用本文的文献

本文引用的文献

9
Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States.估算美国本土高砷家用水井人口。
Environ Sci Technol. 2017 Nov 7;51(21):12443-12454. doi: 10.1021/acs.est.7b02881. Epub 2017 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验