Suppr超能文献

通过双分子荧光相关光谱法(bimFCS)定量研究细胞膜超微结构的时空变化。

Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS.

机构信息

Dept. of Physics, 239 Fronczak Hall, University at Buffalo, SUNY, Buffalo, NY 14260-1500, United States.

Dept. of Physics, 239 Fronczak Hall, University at Buffalo, SUNY, Buffalo, NY 14260-1500, United States.

出版信息

Methods. 2018 May 1;140-141:151-160. doi: 10.1016/j.ymeth.2018.02.019. Epub 2018 Mar 9.

Abstract

It has been long recognized that the cell membrane is heterogeneous on scales ranging from a couple of molecules to micrometers in size and hence diffusion of receptors is length scale dependent. This heterogeneity modulates many cell-membrane-associated processes requiring transient spatiotemporal separation of components. The transient increase in local concentration of interacting signal components enables robust signaling in an otherwise thermally noisy system. Understanding how lipids and proteins self-organize and interact with the cell cortex requires quantifying the motion of the components. Multi-length scale diffusion measurements by single particle tracking, fluorescence correlation spectroscopy (FCS) or related techniques are able to identify components being transiently trapped in nanodomains, from freely moving one and from ones with reduced long-scale diffusion due to interaction with the cell cortex. One particular implementation of multi-length scale diffusion measurements is the combination of FCS with a spatially resolved detector, such as a camera and two-dimensional extended excitation profile. The main advantages of this approach are that all length scales are interrogated simultaneously, uniquely permits quantifying changes to the membrane structure caused by extrenal or internal perturbations. Here, we review how combining total internal reflection microscopy (TIRF) with FC resolves the membrane organization in living cells. We show how to implement the method, which requires only a few seconds of data acquisition to quantify membrane nanodomains, or the spacing of membrane fences caused by the actin cortex. The choice of diffusing fluorescent probe determines which membrane heterogeneity is detected. We review the instrument, sample preparation, experimental and computational requirements to perform such measurements, and discuss the potential and limitations. The discussion includes examples of spatial and temporal comparisons of the membrane structure in response to perturbations demonstrating the complex cell physiology.

摘要

长期以来,人们一直认识到细胞膜在大小为几个分子到几微米的范围内具有异质性,因此受体的扩散是长度尺度相关的。这种异质性调节了许多需要组件瞬时时空分离的细胞膜相关过程。相互作用的信号成分的局部浓度的瞬时增加使得在否则热噪声系统中能够进行稳健的信号传递。理解脂质和蛋白质如何自我组织并与细胞膜皮质相互作用需要定量测量组件的运动。通过单粒子跟踪、荧光相关光谱(FCS)或相关技术进行的多长度尺度扩散测量能够识别在纳米域中瞬时捕获的组件,从自由移动的组件和由于与细胞膜皮质相互作用而扩散减少的组件。多长度尺度扩散测量的一种特殊实现方法是将 FCS 与空间分辨检测器(如相机和二维扩展激发轮廓)结合使用。这种方法的主要优点是所有长度尺度都可以同时进行询问,唯一允许定量测量外部或内部干扰引起的膜结构变化。在这里,我们回顾了将全内反射显微镜(TIRF)与 FC 结合如何解析活细胞中的膜组织。我们展示了如何实现该方法,该方法仅需要几秒钟的数据采集即可量化膜纳米域或由肌动蛋白皮质引起的膜围栏的间隔。扩散荧光探针的选择决定了检测到的膜异质性。我们回顾了执行此类测量的仪器、样品制备、实验和计算要求,并讨论了其潜力和局限性。讨论包括响应扰动时膜结构的时空比较示例,展示了复杂的细胞生理学。

相似文献

1
Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS.
Methods. 2018 May 1;140-141:151-160. doi: 10.1016/j.ymeth.2018.02.019. Epub 2018 Mar 9.
2
Circle scanning STED fluorescence correlation spectroscopy to quantify membrane dynamics and compartmentalization.
Methods. 2018 May 1;140-141:188-197. doi: 10.1016/j.ymeth.2017.12.005. Epub 2017 Dec 16.
3
Quantitative microscopy: protein dynamics and membrane organisation.
Traffic. 2009 Aug;10(8):962-71. doi: 10.1111/j.1600-0854.2009.00908.x. Epub 2009 Apr 4.
4
Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS.
Nat Protoc. 2019 Apr;14(4):1054-1083. doi: 10.1038/s41596-019-0127-9. Epub 2019 Mar 6.
5
The imaging FCS diffusion law in the presence of multiple diffusive modes.
Methods. 2018 May 1;140-141:140-150. doi: 10.1016/j.ymeth.2017.11.016. Epub 2017 Dec 5.
6
Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS.
Mol Biol Cell. 2017 Jun 1;28(11):1507-1518. doi: 10.1091/mbc.E16-07-0536. Epub 2017 Apr 12.
8
Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.
Methods. 2018 May 1;140-141:112-118. doi: 10.1016/j.ymeth.2018.01.017. Epub 2018 Feb 2.
10
STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
Nano Lett. 2015 Sep 9;15(9):5912-8. doi: 10.1021/acs.nanolett.5b02001. Epub 2015 Aug 7.

引用本文的文献

1
The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis.
Biophys J. 2023 Sep 19;122(18):3783-3797. doi: 10.1016/j.bpj.2023.08.005. Epub 2023 Aug 9.
2
Patterning principles of morphogen gradients.
Open Biol. 2022 Oct;12(10):220224. doi: 10.1098/rsob.220224. Epub 2022 Oct 19.
3
High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy.
J Phys D Appl Phys. 2020 Apr 15;53(16):164003. doi: 10.1088/1361-6463/ab6cca. Epub 2020 Feb 13.
4
Revealing Plasma Membrane Nano-Domains with Diffusion Analysis Methods.
Membranes (Basel). 2020 Oct 29;10(11):314. doi: 10.3390/membranes10110314.
5
Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS.
Nat Protoc. 2019 Apr;14(4):1054-1083. doi: 10.1038/s41596-019-0127-9. Epub 2019 Mar 6.
6
Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.
Nano Lett. 2018 Jul 11;18(7):4233-4240. doi: 10.1021/acs.nanolett.8b01190. Epub 2018 Jun 19.

本文引用的文献

1
Genetically encoded fluorescent tags.
Mol Biol Cell. 2017 Apr 1;28(7):848-857. doi: 10.1091/mbc.E16-07-0504.
2
The Secreted Signaling Protein Wnt3 Is Associated with Membrane Domains In Vivo: A SPIM-FCS Study.
Biophys J. 2016 Jul 26;111(2):418-429. doi: 10.1016/j.bpj.2016.06.021.
3
Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains.
Prog Lipid Res. 2016 Apr;62:1-24. doi: 10.1016/j.plipres.2015.12.004. Epub 2015 Dec 29.
4
Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms.
Nat Protoc. 2015 Dec;10(12):1948-74. doi: 10.1038/nprot.2015.100. Epub 2015 Nov 5.
5
STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
Nano Lett. 2015 Sep 9;15(9):5912-8. doi: 10.1021/acs.nanolett.5b02001. Epub 2015 Aug 7.
7
Cytoskeletal pinning controls phase separation in multicomponent lipid membranes.
Biophys J. 2015 Mar 10;108(5):1104-13. doi: 10.1016/j.bpj.2014.12.050.
8
Tracking single molecules at work in living cells.
Nat Chem Biol. 2014 Jul;10(7):524-32. doi: 10.1038/nchembio.1558.
9
10
Fluorescent probes for lipid rafts: from model membranes to living cells.
Chem Biol. 2014 Jan 16;21(1):97-113. doi: 10.1016/j.chembiol.2013.11.009. Epub 2013 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验