Zhao Wei, Li Jun, Sun Xingchao, Zheng Qiwei, Liu Jing, Hua Wei, Liu Jun
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
Hubei Hongshan Laboratory, Wuhan 430070, China.
Hortic Res. 2023 Jun 20;10(8):uhad129. doi: 10.1093/hr/uhad129. eCollection 2023 Aug.
The carbon concentrating mechanism-C photosynthesis-represents a classic example of convergent evolution, but how this important trait originated and evolved remains largely enigmatic. The spider flower is a valuable leafy vegetable crop and medicinal plant that has also been recognized as a C model species. Here we present a high-quality chromosome-scale annotated genome assembly of through a combination of Oxford Nanopore Technology (ONT), HiFi and Hi-C technology. The 17 super-scaffolds cover 98.66% of the estimated genome (997.61 Mb), with a contig N50 of 11.43 Mb and a scaffold N50 of 51.02 Mb. Repetitive elements occupy up to 71.91% of its genome, and over half are long terminal repeat retrotransposons (LTR-RTs) derived from recent bursts, contributing to genome size expansion. Strikingly, LTR-RT explosion also played a critical role in C evolution by altering expression features of photosynthesis-associated genes via preferential insertion in promoters. Integrated multiomics analyses of and the ornamental horticulture C relative reveal that species-specific whole-genome duplication, gene family expansion, recent LTR-RT amplification, and more recent tandem duplication events have all facilitated the evolution of C photosynthesis, revealing uniqueness of C evolution in the genus. Moreover, high leaf vein density and heat stress resilience are associated with shifted gene expression patterns. The mode of C-to-C transition found here yields new insights into evolutionary convergence of a complex plant trait. The availability of this reference-grade genomic resource makes an ideal model system facilitating efforts toward C-aimed crop engineering.
碳浓缩机制——C4光合作用——是趋同进化的一个经典例子,但这一重要性状是如何起源和进化的,在很大程度上仍然是个谜。苘麻是一种有价值的叶菜类作物和药用植物,也被认为是一种C4模式物种。在这里,我们通过结合牛津纳米孔技术(ONT)、HiFi和Hi-C技术,展示了苘麻高质量的染色体级注释基因组组装。17个超级支架覆盖了估计基因组(997.61 Mb)的98.66%,重叠群N50为11.43 Mb,支架N50为51.02 Mb。重复元件占其基因组的比例高达71.91%,其中一半以上是源自近期爆发的长末端重复逆转座子(LTR-RTs),这导致了基因组大小的扩展。引人注目的是,LTR-RT爆发还通过优先插入启动子改变光合作用相关基因的表达特征,在C4进化中发挥了关键作用。对苘麻和观赏园艺C4相关物种的综合多组学分析表明,物种特异性的全基因组复制、基因家族扩展、近期的LTR-RT扩增以及更近的串联重复事件都促进了C4光合作用的进化,揭示了苘麻属C4进化的独特性。此外,高叶脉密度和热胁迫恢复力与基因表达模式的改变有关。这里发现的C3到C4转变模式为复杂植物性状的进化趋同提供了新的见解。这种参考级基因组资源的可用性使苘麻成为一个理想的模型系统,有助于推动针对C4作物的工程改造工作。