Suppr超能文献

核糖体催化中心周围静电环境的简单几何模型及其对延伸循环动力学的意义。

A simple geometrical model of the electrostatic environment around the catalytic center of the ribosome and its significance for the elongation cycle kinetics.

作者信息

Joiret Marc, Kerff Frederic, Rapino Francesca, Close Pierre, Geris Liesbet

机构信息

Biomechanics Research Unit, GIGA in silico medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium.

UR InBios Centre d'Ingénierie des Protéines, Liège University, Bât B6a, Allèe du 6 Août, 19, B-4000 Liège, Belgium.

出版信息

Comput Struct Biotechnol J. 2023 Jul 26;21:3768-3795. doi: 10.1016/j.csbj.2023.07.016. eCollection 2023.

Abstract

The central function of the large subunit of the ribosome is to catalyze peptide bond formation. This biochemical reaction is conducted at the peptidyl transferase center (PTC). Experimental evidence shows that the catalytic activity is affected by the electrostatic environment around the peptidyl transferase center. Here, we set up a minimal geometrical model fitting the available x-ray solved structures of the ribonucleic cavity around the catalytic center of the large subunit of the ribosome. The purpose of this phenomenological model is to estimate quantitatively the electrostatic potential and electric field that are experienced during the peptidyl transfer reaction. At least two reasons motivate the need for developing this quantification. First, we inquire whether the electric field in this particular catalytic environment, made only of nucleic acids, is of the same order of magnitude as the one prevailing in catalytic centers of the proteic enzymes counterparts. Second, the protein synthesis rate is dependent on the nature of the amino acid sequentially incorporated in the nascent chain. The activation energy of the catalytic reaction and its detailed kinetics are shown to be dependent on the mechanical work exerted on the amino acids by the electric field, especially when one of the four charged amino acid residues (R, K, E, D) has previously been incorporated at the carboxy-terminal end of the peptidyl-tRNA. Physical values of the electric field provide quantitative knowledge of mechanical work, activation energy and rate of the peptide bond formation catalyzed by the ribosome. We show that our theoretical calculations are consistent with two independent sets of previously published experimental results. Experimental results for in the minimal case of the dipeptide bond formation when puromycin is used as the final amino acid acceptor strongly support our theoretically derived reaction time courses. Experimental Ribo-Seq results on and comparing the residence time distribution of ribosomes upon specific codons are also well accounted for by our theoretical calculations. The statistical queueing time theory was used to model the ribosome residence time per codon during nascent protein elongation and applied for the interpretation of the Ribo-Seq data. The hypo-exponential distribution fits the residence time observed distribution of the ribosome on a codon. An educated deconvolution of this distribution is used to estimate the rates of each elongation step in a codon specific manner. Our interpretation of all these results sheds light on the functional role of the electrostatic profile around the PTC and its impact on the ribosome elongation cycle.

摘要

核糖体大亚基的核心功能是催化肽键形成。这一生物化学反应在肽基转移酶中心(PTC)进行。实验证据表明,催化活性受肽基转移酶中心周围静电环境的影响。在此,我们建立了一个最小几何模型,以拟合核糖体大亚基催化中心周围核糖核酸腔的现有X射线解析结构。这个唯象模型的目的是定量估计肽基转移反应过程中所经历的静电势和电场。至少有两个原因促使我们进行这种量化。第一,我们探究在这个仅由核酸构成的特定催化环境中的电场,其数量级是否与蛋白质酶对应物催化中心的电场相同。第二,蛋白质合成速率取决于依次掺入新生链中的氨基酸的性质。催化反应的活化能及其详细动力学被证明取决于电场对氨基酸施加的机械功,特别是当四个带电荷的氨基酸残基(R、K、E、D)之一先前已掺入肽基 - tRNA的羧基末端时。电场的物理值提供了关于核糖体催化肽键形成的机械功、活化能和速率的定量知识。我们表明,我们的理论计算与两组独立的先前发表的实验结果一致。当嘌呤霉素用作最终氨基酸受体时,二肽键形成的最小情况下的实验结果有力地支持了我们理论推导的反应时间进程。关于[具体内容缺失]以及比较核糖体在特定密码子上停留时间分布的实验核糖体测序(Ribo - Seq)结果也能很好地由我们的理论计算解释。统计排队时间理论被用于模拟新生蛋白质延伸过程中核糖体在每个密码子上的停留时间,并应用于解释Ribo - Seq数据。次指数分布拟合了核糖体在密码子上观察到的停留时间分布。对该分布进行合理的反卷积用于以密码子特异性方式估计每个延伸步骤的速率。我们对所有这些结果的解释揭示了PTC周围静电分布的功能作用及其对核糖体延伸循环的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a1/10407619/e855d79d750e/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验