Department of Cell and Molecular Biology, Biomedical Center, University of Uppsala, 75237 Uppsala, Sweden.
Institute for Biochemistry & Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
Nucleic Acids Res. 2021 May 21;49(9):5124-5142. doi: 10.1093/nar/gkab260.
Ribosome profiling spectra bear rich information on translation control and dynamics. Yet, due to technical biases in library generation, extracting quantitative measures of discrete translation events has remained elusive. Using maximum likelihood statistics and data set from Escherichia coli we develop a robust method for neutralizing technical biases (e.g. base specific RNase preferences in ribosome-protected mRNA fragments (RPF) generation), which allows for correct estimation of translation times at single codon resolution. Furthermore, we validated the method with available datasets from E. coli treated with antibiotic to inhibit isoleucyl-tRNA synthetase, and two datasets from Saccharomyces cerevisiae treated with two RNases with distinct cleavage signatures. We demonstrate that our approach accounts for RNase cleavage preferences and provides bias-corrected translation times estimates. Our approach provides a solution to the long-standing problem of extracting reliable information about peptide elongation times from highly noisy and technically biased ribosome profiling spectra.
核糖体谱图蕴含着丰富的翻译调控和动态信息。然而,由于文库生成中的技术偏差,离散翻译事件的定量测量仍然难以实现。我们使用最大似然统计和大肠杆菌的数据,开发了一种强大的方法来中和技术偏差(例如核糖体保护的 mRNA 片段(RPF)生成中碱基特异性 RNase 偏好),从而可以正确估计单个密码子分辨率的翻译时间。此外,我们还使用大肠杆菌中可用的数据集进行了验证,这些数据集是用抗生素处理的,以抑制异亮氨酰-tRNA 合成酶,以及用两种具有不同切割特征的 RNase 处理的酿酒酵母的两个数据集。我们证明了我们的方法考虑了 RNase 切割偏好,并提供了偏置校正的翻译时间估计。我们的方法为从高度嘈杂和技术偏差的核糖体谱图中提取可靠的肽延伸时间信息这一长期存在的问题提供了一个解决方案。