Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland.
Science. 2021 Jun 18;372(6548):1306-1313. doi: 10.1126/science.abf3546. Epub 2021 May 13.
Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.
病毒 RNA 依赖性 RNA 聚合酶和下游蛋白是通过翻译 SARS-CoV-2(严重急性呼吸综合征冠状病毒 2)RNA 基因组时发生的关键事件。在此,我们展示了处于翻译状态的哺乳动物核糖体在病毒 RNA 上引发移码的冷冻电镜结构。病毒 RNA 采用假结结构,该结构位于核糖体信使 RNA(mRNA)通道的入口处,以产生 mRNA 张力并促进移码,而新生的病毒多蛋白与核糖体隧道形成独特的相互作用。生化实验验证了结构观察结果,并揭示了影响移码效率的机制和调节特征。最后,我们比较了先前显示可降低移码的化合物,以确定它们抑制 SARS-CoV-2 复制的能力,从而确立了冠状病毒移码作为抗病毒干预的靶点。