Maksimchuk Nataliya V, Puiggalí-Jou Jordi, Zalomaeva Olga V, Larionov Kirill P, Evtushok Vasilii Yu, Soshnikov Igor E, Solé-Daura Albert, Kholdeeva Oxana A, Poblet Josep M, Carbó Jorge J
Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia.
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain.
ACS Catal. 2023 Jul 24;13(15):10324-10339. doi: 10.1021/acscatal.3c02416. eCollection 2023 Aug 4.
The decomposition of hydrogen peroxide (HO) is the main undesired side reaction in catalytic oxidation processes of industrial interest that make use of HO as a terminal oxidant, such as the epoxidation of alkenes. However, the mechanism responsible for this reaction is still poorly understood, thus hindering the development of design rules to maximize the efficiency of catalytic oxidations in terms of product selectivity and oxidant utilization efficiency. Here, we thoroughly investigated the HO decomposition mechanism using a Zr-monosubstituted dimeric Lindqvist tungstate, (BuN)[{WOZr(μ-OH)}] (), which revealed high activity for this reaction in acetonitrile. The mechanism of the -catalyzed HO degradation in the absence of an organic substrate was investigated using kinetic, spectroscopic, and computational tools. The reaction is first order in the Zr catalyst and shows saturation behavior with increasing HO concentration. The apparent activation energy is 11.5 kcal·mol, which is significantly lower than the values previously found for Ti- and Nb-substituted Lindqvist tungstates (14.6 and 16.7 kcal·mol, respectively). EPR spectroscopic studies indicated the formation of superoxide radicals, while EPR with a specific singlet oxygen trap, 2,2,6,6-tetramethylpiperidone (4-oxo-TEMP), revealed the generation of O. The interaction of test substrates, α-terpinene and tetramethylethylene, with HO in the presence of corroborated the formation of products typical of the oxidation processes that engage O (endoperoxide ascaridole and 2,3-dimethyl-3-butene-2-hydroperoxide, respectively). While radical scavengers BuOH and -benzoquinone produced no effect on the peroxide product yield, the addition of 4-oxo-TEMP significantly reduced it. After optimization of the reaction conditions, a 90% yield of ascaridole was attained. DFT calculations provided an atomistic description of the HO decomposition mechanism by Zr-substituted Lindqvist tungstate catalysts. Calculations showed that the reaction proceeds through a Zr-trioxidane [Zr-η-OO(OH)] key intermediate, whose formation is the rate-determining step. The Zr-substituted POM activates heterolytically a first HO molecule to generate a Zr-peroxo species, which attacks nucleophilically to a second HO, causing its heterolytic O-O cleavage to yield the Zr-trioxidane complex. In agreement with spectroscopic and kinetic studies, the lowest-energy pathway involves dimeric Zr species and an inner-sphere mechanism. Still, we also found monomeric inner- and outer-sphere pathways that are close in energy and could coexist with the dimeric one. The highly reactive Zr-trioxidane intermediate can evolve heterolytically to release singlet oxygen and also decompose homolytically, producing superoxide as the predominant radical species. For HO decomposition by Ti- and Nb-substituted POMs, we also propose the formation of the TM-trioxidane key intermediate, finding good agreement with the observed trends in apparent activation energies.
过氧化氢(HO)的分解是工业催化氧化过程中主要的不良副反应,这些过程利用HO作为终端氧化剂,如烯烃的环氧化反应。然而,该反应的机理仍未得到充分理解,这阻碍了设计规则的发展,难以在产物选择性和氧化剂利用效率方面最大化催化氧化的效率。在此,我们使用单锆取代的二聚Lindqvist钨酸盐(BuN)[{WOZr(μ-OH)}]()对HO分解机理进行了深入研究,该化合物在乙腈中对该反应显示出高活性。使用动力学、光谱学和计算工具研究了在没有有机底物的情况下 - 催化HO降解的机理。该反应对Zr催化剂为一级反应,并且随着HO浓度增加呈现饱和行为。表观活化能为11.5 kcal·mol,明显低于先前发现的Ti和Nb取代的Lindqvist钨酸盐的值(分别为14.6和16.7 kcal·mol)。电子顺磁共振(EPR)光谱研究表明生成了超氧自由基,而使用特定单线态氧捕获剂2,2,6,6 - 四甲基哌啶酮(4 - 氧代 - TEMP)的EPR揭示了O的生成。测试底物α - 萜品烯和四甲基乙烯在存在 时与HO的相互作用证实了涉及O的氧化过程典型产物的形成(分别为内过氧化物驱虫豆素和2,3 - 二甲基 - 3 - 丁烯 - 2 - 氢过氧化物)。虽然自由基清除剂BuOH和 - 苯醌对过氧化物产物产率没有影响,但加入4 - 氧代 - TEMP显著降低了产率。在优化反应条件后,驱虫豆素的产率达到了90%。密度泛函理论(DFT)计算提供了Zr取代的Lindqvist钨酸盐催化剂对HO分解机理的原子描述。计算表明该反应通过Zr - 三氧杂环丙烷[Zr - η - OO(OH)]关键中间体进行,其形成是速率决定步骤。Zr取代的多金属氧酸盐(POM)异裂活化第一个HO分子以生成Zr - 过氧物种,该物种亲核攻击第二个HO,导致其异裂O - O裂解以产生Zr - 三氧杂环丙烷配合物。与光谱学和动力学研究一致,能量最低的途径涉及二聚Zr物种和内球机理。不过,我们还发现了能量相近且可能与二聚体途径共存的单体内球和外球途径。高活性的Zr - 三氧杂环丙烷中间体可以异裂分解以释放单线态氧,也可以均裂分解以产生超氧自由基作为主要自由基物种。对于Ti和Nb取代的POMs催化的HO分解,我们还提出了TM - 三氧杂环丙烷关键中间体的形成,这与观察到的表观活化能趋势有很好的一致性。