Zhang Yu, Mascaretti Luca, Melchionna Michele, Henrotte Olivier, Kment Štepan, Fornasiero Paolo, Naldoni Alberto
Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research Unit, INSTM-Trieste, Center for Energy, Environment and Transport Giacomo Ciamician, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
ACS Catal. 2023 Jul 20;13(15):10205-10216. doi: 10.1021/acscatal.3c01837. eCollection 2023 Aug 4.
Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum HO selectivity of 90%, and achieve a HO productivity of 207 mmol g h at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiON surface content promoted a higher HO selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.
目前,电化学电池的大规模发展受到缺乏具有高催化活性、产物选择性和界面传质能力的地球丰富型电催化剂的阻碍。在此,我们开发了一种电催化剂制备方法,通过在聚合物粘合剂存在的情况下,对自组装在碳气体扩散层上的等离子体氮化钛(TiN)纳米立方体进行辐照,来满足这些要求。光照时产生的局部加热为形成TiN/F掺杂碳杂化物创造了独特条件,这些杂化物的活性比原始电极高出近20倍。在碱性条件下,它们表现出增强的稳定性,最大HO选择性为90%,在相对于可逆氢电极(RHE)为0.2 V时,HO生产率达到207 mmol g⁻¹ h⁻¹。对不同电极排列进行的详细电化学研究表明,纳米复合材料的形成对于实现高电流起着关键作用。特别是,增加的TiON表面含量促进了更高的HO选择性,而氟化纳米碳因其超疏水特性赋予电极良好的稳定性。