Loh Joel Yi Yang, Wang Andrew, Mohan Abhinav, Tountas Athanasios A, Gouda Abdelaziz M, Tavasoli Alexandra, Ozin Geoffrey A
Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
The Department of Electrical and Electronic Engineering, The Photon Science Institute, Alan Turing Building, Oxford Rd, Manchester, M13 9PY, UK.
Adv Sci (Weinh). 2024 May;11(18):e2306604. doi: 10.1002/advs.202306604. Epub 2024 Mar 13.
Although solar fuels photocatalysis offers the promise of converting carbon dioxide directly with sunlight as commercially scalable solutions have remained elusive over the past few decades, despite significant advancements in photocatalysis band-gap engineering and atomic site activity. The primary challenge lies not in the discovery of new catalyst materials, which are abundant, but in overcoming the bottlenecks related to material-photoreactor synergy. These factors include achieving photogeneration and charge-carrier recombination at reactive sites, utilizing high mass transfer efficiency supports, maximizing solar collection, and achieving uniform light distribution within a reactor. Addressing this multi-dimensional problem necessitates harnessing machine learning techniques to analyze real-world data from photoreactors and material properties. In this perspective, the challenges are outlined associated with each bottleneck factor, review relevant data analysis studies, and assess the requirements for developing a comprehensive solution that can unlock the full potential of solar fuels photocatalysis technology. Physics-informed machine learning (or Physics Neural Networks) may be the key to advancing this important area from disparate data towards optimal reactor solutions.
尽管太阳能燃料光催化有望利用阳光直接转化二氧化碳,但在过去几十年里,尽管光催化带隙工程和原子位点活性取得了重大进展,但商业上可扩展的解决方案仍然难以实现。主要挑战不在于发现新的催化剂材料(这类材料很丰富),而在于克服与材料 - 光反应器协同作用相关的瓶颈。这些因素包括在反应位点实现光生载流子的产生和复合、利用高质量传递效率的载体、最大化太阳能收集以及在反应器内实现均匀的光分布。解决这个多维度问题需要利用机器学习技术来分析来自光反应器的实际数据和材料特性。从这个角度出发,概述了与每个瓶颈因素相关的挑战,回顾了相关的数据分析研究,并评估了开发一个能够释放太阳能燃料光催化技术全部潜力的综合解决方案的要求。基于物理的机器学习(或物理神经网络)可能是推动这一重要领域从分散的数据走向最优反应器解决方案的关键。