Fischer Ann-Kathrin, Mühlbacher Axel C
Department of Health, Care, Management, University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany.
JMIR Res Protoc. 2023 Aug 10;12:e46056. doi: 10.2196/46056.
Strokes pose a particular challenge to the health care system. Although stroke-related mortality has declined in recent decades, the absolute number of new strokes (incidence), stroke deaths, and survivors of stroke has increased. With the increasing need of neurorehabilitation and the decreasing number of professionals, innovations are needed to ensure adequate care. Digital technologies are increasingly used to meet patients' unfilled needs during their patient journey. Patients must adhere to unfamiliar digital technologies to engage in health interventions. Therefore, the acceptance of the benefits and burdens of digital technologies in health interventions is a key factor in implementing these innovations.
This study aims to describe the development of a discrete choice experiment (DCE) to weigh criteria that impact patient and public acceptance. Secondary study objectives are a benefit-burden assessment (estimation of the maximum acceptable burden of technical features and therapy-related characteristics for the patient or individual, eg, no human contact), overall comparison (assessment of the relative importance of attributes for comparing digital technologies), and adherence (identification of key attributes that influence patient adherence). The exploratory objectives include heterogeneity assessment and subgroup analysis. The methodological aims are to investigate the use of DCE.
To obtain information on the criteria impacting acceptance, a DCE will be conducted including 7 attributes based on formative qualitative research. Patients with stroke (experimental group) and the general population (control group) are surveyed. The final instrument includes 6 best-best choice tasks in partial design. The experimental design is a fractional-factorial efficient Bayesian design (D-error). A conditional logit regression model and mixed logistic regression models will be used for analysis. To consider the heterogeneity of subgroups, a latent class analysis and an analysis of heteroscedasticity will be performed.
The literature review, qualitative preliminary study, survey development, and pretesting were completed. Data collection and analysis will be completed in the last quarter of 2023.
Our results will inform decision makers about patients' and publics' acceptance of digital technologies used in innovative interventions. The patient preference information will improve decisions regarding the development, adoption, and pricing of innovative interventions. The behavioral changes in the choice of digital intervention alternatives are observable and can therefore be statistically analyzed. They can be translated into preferences, which define the value. This study will investigate the influences on the acceptance of digital interventions and thus support decisions and future research.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46056.
中风给医疗保健系统带来了特殊挑战。尽管近几十年来与中风相关的死亡率有所下降,但新中风(发病率)、中风死亡以及中风幸存者的绝对数量却有所增加。随着神经康复需求的增加以及专业人员数量的减少,需要创新来确保提供充分的护理。数字技术越来越多地被用于满足患者在就医过程中未得到满足的需求。患者必须采用不熟悉的数字技术来参与健康干预。因此,在健康干预中接受数字技术的益处和负担是实施这些创新的关键因素。
本研究旨在描述一种离散选择实验(DCE)的开发过程,以权衡影响患者和公众接受度的标准。次要研究目标是进行益处 - 负担评估(估计患者或个体对技术特征和治疗相关特征的最大可接受负担,例如无人接触)、总体比较(评估用于比较数字技术的属性的相对重要性)以及依从性(确定影响患者依从性的关键属性)。探索性目标包括异质性评估和亚组分析。方法学目标是研究DCE的使用情况。
为了获取有关影响接受度标准的信息,将基于形成性定性研究进行一项包含7个属性的DCE。对中风患者(实验组)和普通人群(对照组)进行调查。最终工具包括部分设计中的6个最佳 - 最佳选择任务。实验设计是分数因子高效贝叶斯设计(D - 误差)。将使用条件逻辑回归模型和混合逻辑回归模型进行分析。为了考虑亚组的异质性,将进行潜在类别分析和异方差分析。
文献综述、定性初步研究、调查问卷开发和预测试均已完成。数据收集和分析将于2023年最后一个季度完成。
我们的结果将告知决策者患者和公众对创新干预中使用的数字技术的接受情况。患者偏好信息将改善有关创新干预的开发、采用和定价的决策。在数字干预替代方案选择中的行为变化是可观察到的,因此可以进行统计分析。它们可以转化为定义价值的偏好。本研究将调查对数字干预接受度的影响,从而支持决策制定和未来研究。
国际注册报告标识符(IRRID):DERR1 - 10.2196/46056。