Suppr超能文献

I 蛋白结合位点的基础动力学。

Base Dynamics in the I Protein Binding Site.

机构信息

Department of Chemistry & Biochemistry, California State University at Dominguez Hills, Carson, California 90747, United States.

Department of Chemistry, Missouri State University, Springfield, Missouri 65897, United States.

出版信息

J Phys Chem B. 2023 Aug 24;127(33):7266-7275. doi: 10.1021/acs.jpcb.3c03687. Epub 2023 Aug 10.

Abstract

Protein-DNA interactions play an important role in numerous biological functions within the living cell. In many of these interactions, the DNA helix is significantly distorted upon protein-DNA complex formation. The I restriction-modification system is one such system, where the methylation target is flipped out of the helix when bound to the methyltransferase. However, the base flipping mechanism is not well understood. The dynamics of the binding site of the I methyltransferase and endonuclease (underlined) within the DNA oligomer [d(GATATATC)] are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs deuterated on the base of nucleotides within and flanking the [5'-GCGC-3'] sequence indicate that all of these positions are structurally flexible. Previously, conformational flexibility within the phosphodiester backbone and furanose ring within the target sequence has been observed and hypothesized to play a role in the distortion mechanism. However, whether that distortion was occurring through an active or passive mechanism remained unclear. These NMR data demonstrate that although the [5'-GCGC-3'] sequence is dynamic, the target cytosine is not passively flipping out of the double-helix on the millisecond-picosecond time scale. Additionally, although previous studies have shown that both the furanose ring and phosphodiester backbone experience a change in dynamics upon methylation, which may play a role in recognition and cleavage by the endonuclease, our observations here indicate that methylation has no effect on the dynamics of the base itself.

摘要

蛋白质与 DNA 的相互作用在活细胞的许多生物功能中起着重要作用。在许多这些相互作用中,DNA 双螺旋在蛋白质-DNA 复合物形成时会发生显著扭曲。I 限制-修饰系统就是这样一个系统,其中当甲基转移酶与靶 DNA 结合时,靶 DNA 会从螺旋中翻转出来。然而,碱基翻转机制还不是很清楚。I 甲基转移酶和内切酶的结合位点的动力学(下划线)在 DNA 寡聚物 [d(GATATATC)] 中使用氘固态 NMR(SSNMR)进行研究。从位于 [5'-GCGC-3'] 序列内和侧翼的核苷酸碱基氘化的 DNA 获得的 SSNMR 谱表明,所有这些位置都是结构灵活的。先前已经观察到并假设靶序列中的磷酸二酯骨架和呋喃糖环内的构象灵活性在扭曲机制中起作用。然而,这种扭曲是通过主动还是被动机制发生的仍然不清楚。这些 NMR 数据表明,尽管 [5'-GCGC-3'] 序列是动态的,但靶嘧啶碱基不会在毫秒至皮秒时间尺度上被动地从双螺旋中翻转出来。此外,尽管先前的研究表明,呋喃糖环和磷酸二酯骨架在甲基化时都经历了动力学变化,这可能在核酸内切酶的识别和切割中起作用,但我们在这里的观察表明,甲基化对碱基本身的动力学没有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c90/10461302/79fa5ab1a03a/jp3c03687_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验