Suppr超能文献

液体模板气凝胶

Liquid-Templating Aerogels.

作者信息

Hashemi Seyyed Alireza, Ghaffarkhah Ahmadreza, Goodarzi Milad, Nazemi Amir, Banvillet Gabriel, Milani Abbas S, Soroush Masoud, Rojas Orlando J, Ramakrishna Seeram, Wuttke Stefan, Russell Thomas P, Kamkar Milad, Arjmand Mohammad

机构信息

Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.

Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.

出版信息

Adv Mater. 2023 Oct;35(42):e2302826. doi: 10.1002/adma.202302826. Epub 2023 Sep 4.

Abstract

Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm g ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.

摘要

现代材料科学见证了先进制造方法的时代,这些方法可在从纳米尺度到宏观尺度的范围内设计功能。人们开发了多种制造和增材制造方法,但针对特定应用设计材料的能力仍然有限。在此,我们介绍了一种新颖的策略,该策略能够以按需定制的特性,定向制造超轻气凝胶。该过程依赖于通过界面络合进行可控的液体模板化,以生成可调节的、对刺激有响应的三维结构(多相)丝状液体模板。该方法涉及纳米级化学以及纳米颗粒(NPs)在液 - 液界面的微观组装,以生产具有多尺度孔隙率、超低密度(3.05 - 3.41毫克/立方厘米)、高压缩性(90%)并兼具弹性恢复力和即时形状恢复能力的分级宏观气凝胶。这克服了超轻气凝胶面临的挑战,包括机械完整性差以及无法形成具有按需功能的预定义三维结构,从而适用于多种应用。这种新方法的可控性使得能够获得具有高比屏蔽效能(39893分贝·平方厘米/克)的可调谐电磁干扰屏蔽性能,以及有史以来报道的最高吸油能力之一(对于氯仿,吸油量为气凝胶初始重量的487倍)。这些特性源于液体模板化的可设计性,将轻质材料的边界推向了系统的功能设计和应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验