Suppr超能文献

STarT Back 工具预测低背痛患者不良结局的预测性能:系统评价和荟萃分析方案。

Predictive performance of the STarT Back tool for poor outcomes in patients with low back pain: protocol for a systematic review and meta-analysis.

机构信息

Rehabilitation medicine department, Fujian Provincial Hospital, Fuzhou, China

Rehabilitation medicine department, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.

出版信息

BMJ Open. 2023 Aug 10;13(8):e069818. doi: 10.1136/bmjopen-2022-069818.

Abstract

INTRODUCTION

Subgroups for Targeted Treatment Back Tool (SBT) is a brief multiple-construct risk prediction tool for patients with low back pain (LBP). Thus far, the predictive ability of this tool has been inconsistent. Therefore, we aim to conduct a literature review on the predictive ability of the SBT to determine the outcomes of patients with LBP. The results of this review should improve the ability of the SBT to predict poor outcomes in patients with LBP.

METHODS AND ANALYSIS

Databases including PubMed, EMBASE, Cochrane Central, Web of Science, Chinese National Knowledge Infrastructure Databases, Chinese Science and Technology Journal Database, and Wanfang will be searched for studies on SBT and LBP from their inception until 31 March 2023. Longitudinal studies investigating the association between SBT subgroups and LBP outcomes, including pain, disability and quality of life, will be included. The identified studies will be independently screened for eligibility by two reviewers. A standardised sheet will be used to extract data. The Newcastle-Ottawa Scale will be used to assess the methodological quality of the included studies. Heterogeneity will be evaluated by the χ test with Cochran's Q statistic and quantified by the I statistic. The results will be synthesised qualitatively and presented as pooled risk ratios or beta coefficients quantitatively. The results will also be presented using their 95% confidence limits. Publication bias will be assessed using the method proposed by Egger and by visual inspection of funnel plots.

ETHICS AND DISSEMINATION

This study is a secondary analysis of original studies that received ethics approval. Therefore, prior ethical approval is not required for this study. The findings will be submitted to relevant peer-reviewed journals for publication and presented at profession-specific conferences.

TRIAL REGISTRATION NUMBER

PROSPERO registration numberCRD42022309189.

摘要

简介

针对靶向治疗后备工具(SBT)是一种用于治疗腰痛(LBP)患者的简短多结构风险预测工具。到目前为止,该工具的预测能力一直不一致。因此,我们旨在对 SBT 的预测能力进行文献综述,以确定 LBP 患者的结局。该综述的结果应能提高 SBT 预测 LBP 患者不良结局的能力。

方法与分析

从建库至 2023 年 3 月 31 日,我们将检索 PubMed、EMBASE、Cochrane 中心、Web of Science、中国知网、中国科技期刊数据库和万方数据知识服务平台等数据库,以获取 SBT 与 LBP 相关的研究。纳入的研究将包括调查 SBT 亚组与 LBP 结局(包括疼痛、残疾和生活质量)之间关联的纵向研究。两名评审员将独立筛选符合纳入标准的研究。使用标准化表格提取数据。将使用 Newcastle-Ottawa 量表评估纳入研究的方法学质量。通过 Cochran's Q 统计量和 I 统计量评估异质性。结果将以定性方式进行综合,并以定量方式呈现为汇总风险比或β系数。结果还将以其 95%置信区间呈现。使用 Egger 法和漏斗图的视觉检查评估发表偏倚。

伦理与传播

本研究是对已获得伦理批准的原始研究的二次分析。因此,本研究不需要事先获得伦理批准。研究结果将提交给相关同行评议期刊发表,并在专业会议上展示。

注册号

PROSPERO 注册号 CRD42022309189。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f1/10423782/92e4f56db0ed/bmjopen-2022-069818f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验