Suppr超能文献

理解人脸识别。

Understanding face recognition.

作者信息

Bruce V, Young A

出版信息

Br J Psychol. 1986 Aug;77 ( Pt 3):305-27. doi: 10.1111/j.2044-8295.1986.tb02199.x.

Abstract

The aim of this paper is to develop a theoretical model and a set of terms for understanding and discussing how we recognize familiar faces, and the relationship between recognition and other aspects of face processing. It is suggested that there are seven distinct types of information that we derive from seen faces; these are labelled pictorial, structural, visually derived semantic, identity-specific semantic, name, expression and facial speech codes. A functional model is proposed in which structural encoding processes provide descriptions suitable for the analysis of facial speech, for analysis of expression and for face recognition units. Recognition of familiar faces involves a match between the products of structural encoding and previously stored structural codes describing the appearance of familiar faces, held in face recognition units. Identity-specific semantic codes are then accessed from person identity nodes, and subsequently name codes are retrieved. It is also proposed that the cognitive system plays an active role in deciding whether or not the initial match is sufficiently close to indicate true recognition or merely a 'resemblance'; several factors are seen as influencing such decisions. This functional model is used to draw together data from diverse sources including laboratory experiments, studies of everyday errors, and studies of patients with different types of cerebral injury. It is also used to clarify similarities and differences between processes for object, word and face recognition.

摘要

本文旨在构建一个理论模型和一套术语,用于理解和探讨我们如何识别熟悉的面孔,以及识别与面孔加工其他方面之间的关系。研究表明,我们从所见面孔中获取七种不同类型的信息,分别标记为图像信息、结构信息、视觉衍生语义信息、特定身份语义信息、名字信息、表情信息和面部言语编码。本文提出了一个功能模型,其中结构编码过程提供适用于面部言语分析、表情分析和面部识别单元分析的描述。熟悉面孔的识别涉及结构编码产物与先前存储在面部识别单元中的描述熟悉面孔外观的结构代码之间的匹配。然后从个人身份节点访问特定身份语义代码,随后检索名字代码。研究还提出,认知系统在决定初始匹配是否足够接近以表明是真正的识别还是仅仅是“相似”方面发挥着积极作用;有几个因素被认为会影响此类决策。这个功能模型用于整合来自不同来源的数据,包括实验室实验、日常错误研究以及对不同类型脑损伤患者的研究。它还用于阐明物体、单词和面孔识别过程之间的异同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验