Suppr超能文献

基于贝叶斯网络的麻风反应发生预测

Prediction of the occurrence of leprosy reactions based on Bayesian networks.

作者信息

de Andrade Rodrigues Rafael Saraiva, Heise Eduardo Ferreira José, Hartmann Luis Felipe, Rocha Guilherme Eduardo, Olandoski Marcia, de Araújo Stefani Mariane Martins, Latini Ana Carla Pereira, Soares Cleverson Teixeira, Belone Andrea, Rosa Patrícia Sammarco, de Andrade Pontes Maria Araci, de Sá Gonçalves Heitor, Cruz Rossilene, Penna Maria Lúcia Fernandes, Carvalho Deborah Ribeiro, Fava Vinicius Medeiros, Bührer-Sékula Samira, Penna Gerson Oliveira, Moro Claudia Maria Cabral, Nievola Julio Cesar, Mira Marcelo Távora

机构信息

School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, Paraná, Brazil.

Graduate Program in Health Technology, PUCPR, Curitiba, Paraná, Brazil.

出版信息

Front Med (Lausanne). 2023 Jul 26;10:1233220. doi: 10.3389/fmed.2023.1233220. eCollection 2023.

Abstract

INTRODUCTION

Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data.

METHODS

The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software.

RESULTS

Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity.

CONCLUSION

We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.

摘要

引言

麻风反应(LR)是宿主炎症反应强烈激活的严重发作,病因不明,是目前麻风患者永久性神经损伤的主要原因。已经描述了几种LR的遗传和非遗传风险因素;然而,将这些信息结合起来估计麻风患者发生LR风险的尝试有限。在此,我们提出一种基于人工智能(AI)的系统,该系统可以使用临床、人口统计学和遗传数据评估LR风险。

方法

该研究包括来自巴西不同地区的四个数据集,总计1450例麻风患者,前瞻性随访至少2年以评估LR的发生情况。使用WEKA软件进行数据挖掘,遵循两步方案,基于贝叶斯网络选择AI系统中包含的变量,并使用NETICA软件进行开发。

结果

对完整数据库的分析产生了一个能够估计LR风险的系统,准确率为82.7%,灵敏度为79.3%,特异性为86.2%。当仅使用包含与LR相关的宿主遗传信息的数据库时,性能提高到准确率87.7%,灵敏度85.7%,特异性89.4%。

结论

我们开发了一个易于使用、在线、免费访问的系统,可识别有发生LR风险的麻风患者。对个体患者进行LR风险评估可能会发现需要密切监测的对象,这可能对预防永久性残疾、患者生活质量以及麻风控制项目产生积极影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e1/10411956/d42f467911c1/fmed-10-1233220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验