Suppr超能文献

BIDL:一种用于时空处理的受大脑启发的深度学习框架。

BIDL: a brain-inspired deep learning framework for spatiotemporal processing.

作者信息

Wu Zhenzhi, Shen Yangshu, Zhang Jing, Liang Huaju, Zhao Rongzhen, Li Han, Xiong Jianping, Zhang Xiyu, Chua Yansong

机构信息

Lynxi Technologies, Co. Ltd., Beijing, China.

Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, China.

出版信息

Front Neurosci. 2023 Jul 26;17:1213720. doi: 10.3389/fnins.2023.1213720. eCollection 2023.

Abstract

Brain-inspired deep spiking neural network (DSNN) which emulates the function of the biological brain provides an effective approach for event-stream spatiotemporal perception (STP), especially for dynamic vision sensor (DVS) signals. However, there is a lack of generalized learning frameworks that can handle various spatiotemporal modalities beyond event-stream, such as video clips and 3D imaging data. To provide a unified design flow for generalized spatiotemporal processing (STP) and to investigate the capability of lightweight STP processing via brain-inspired neural dynamics, this study introduces a training platform called brain-inspired deep learning (BIDL). This framework constructs deep neural networks, which leverage neural dynamics for processing temporal information and ensures high-accuracy spatial processing via artificial neural network layers. We conducted experiments involving various types of data, including video information processing, DVS information processing, 3D medical imaging classification, and natural language processing. These experiments demonstrate the efficiency of the proposed method. Moreover, as a research framework for researchers in the fields of neuroscience and machine learning, BIDL facilitates the exploration of different neural models and enables global-local co-learning. For easily fitting to neuromorphic chips and GPUs, the framework incorporates several optimizations, including iteration representation, state-aware computational graph, and built-in neural functions. This study presents a user-friendly and efficient DSNN builder for lightweight STP applications and has the potential to drive future advancements in bio-inspired research.

摘要

受大脑启发的深度脉冲神经网络(DSNN)模拟生物大脑的功能,为事件流时空感知(STP)提供了一种有效方法,特别是对于动态视觉传感器(DVS)信号。然而,缺乏能够处理除事件流之外的各种时空模态(如视频片段和3D成像数据)的通用学习框架。为了提供通用时空处理(STP)的统一设计流程,并通过受大脑启发的神经动力学研究轻量级STP处理的能力,本研究引入了一个名为受大脑启发的深度学习(BIDL)的训练平台。该框架构建深度神经网络,利用神经动力学处理时间信息,并通过人工神经网络层确保高精度的空间处理。我们进行了涉及各种类型数据的实验,包括视频信息处理、DVS信息处理、3D医学成像分类和自然语言处理。这些实验证明了所提方法的有效性。此外,作为神经科学和机器学习领域研究人员的一个研究框架,BIDL有助于探索不同的神经模型,并实现全局-局部协同学习。为了易于适配神经形态芯片和GPU,该框架纳入了多种优化,包括迭代表示、状态感知计算图和内置神经函数。本研究为轻量级STP应用提供了一个用户友好且高效的DSNN构建器,并有可能推动未来生物启发研究的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50e6/10410154/ce4f996dad6b/fnins-17-1213720-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验