Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
Wildlife Conservation Society Canada, Toronto, Ontario, Canada.
Glob Chang Biol. 2023 Oct;29(19):5720-5735. doi: 10.1111/gcb.16894. Epub 2023 Aug 11.
Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralization and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 and 4.5 m deep) along four chronosequences, from elevated permafrost peat plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic laboratory incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by 19.3 ± 7.2 kg C m over <600 years (13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 ± 2.5 kg C m . We estimate ~19% (±5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 ± 7.9 kg C m over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralization of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.
在不连续多年冻土区,泥炭地的多年冻土迅速持续融化,使大量全球重要的土壤碳(C)暴露在微生物过程中。这种泥炭 C 的矿化和向大气释放作为温室气体是气候变化的一个潜在重要反馈。在这里,我们调查了在加拿大西部的一个泥炭地复合体中多年冻土融化对泥炭 C 的影响。我们沿着四条时间序列收集了 15 个完整的泥炭芯(深度在 2.7 至 4.5 米之间),从高海拔多年冻土泥炭高原到饱和热喀斯特沼泽,这些沼泽在 600 年前就已经融化。我们对泥炭芯进行了泥炭 C 储量和泥炭质量分析,方法是使用傅里叶变换红外光谱(FTIR)和 C/N 比作为分解指标,并通过 200 天的有氧实验室培养评估潜在可分解性。我们的结果表明,解冻后净 C 损失,在<600 年内,总泥炭 C 储量平均减少约 19.3±7.2kg C m-2(损失 13%)。同期,地表新泥炭的平均后解冻积累量约为 13.1±2.5kg C m-2。我们估计,解冻后(<600 年内平均 26±7.9kg C m-2)深泥炭(距地表 40 厘米以下)C 损失约 19%(±5.8%)。我们的 FTIR 分析表明,热喀斯特沼泽中解冻过渡层下方的泥炭比多年冻土高原上类似类型和年龄的泥炭稍微分解,但我们在整个时间序列中没有发现深层泥炭质量或易变性质的显著变化。我们的培养结果也表明,深层泥炭的 C 矿化没有随时间序列而增加。尽管多年冻土融化后深层泥炭质量的这些变化很小,这突显了 C 损失的确切机制和过程的不确定性,但我们对泥炭 C 储量的分析表明,加拿大西部泥炭地的多年冻土融化后 C 损失很大。