Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States.
ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39127-39142. doi: 10.1021/acsami.3c07091. Epub 2023 Aug 11.
Dentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding. The results of high-resolution transmission electron microscopy revealed periodic bands of 67 nm dentin collagen fibrils after Carbo etching, and the hydroxyproline concentration increasing with prolonged chelating time denied the concept of extrafibrillar demineralization. The results that wet and dry bonding with Carbo-based demineralization produced a weaker bond strength than the traditional phosphoric acid wet adhesion suggested that the Carbo-based demineralization is an unreliable adhesion strategy. A novel protocol of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion revealed that a micro-/nano-level rough, rigid, and non-collagen exposed dentin surface was produced, the micro-tensile bond strength was maintained after aging under dry and wet bonding modes, and in situ zymography and nanoleakage within the hybrid layers presented lower signals after aging. Cell culture in vitro and a rabbit deep dentin adhesion model in vivo proved that this protocol is safe and biocompatible. Taken together, the concept of extrafibrillar demineralization is limited and insufficient to use in the clinic. The strategy of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion produces a bonding effect with reliability, durability, and safety.
牙本质粘结界面稳定性是目前临床牙科学中牙齿粘结的关键问题。选择性纤维外脱矿的概念为维持纤维内矿物质以防止界面降解开辟了新途径。在这里,我们使用超高相对分子质量的聚丙烯酸钠[Carbopol(Carbo)> 40 kDa]作为钙螯合剂,对这一概念提出了挑战,并提出了一种可靠的牙本质干法粘结方案。高分辨率透射电子显微镜的结果显示,Carbo 蚀刻后牙本质胶原纤维呈现出周期性的 67nm 条带,而羟脯氨酸浓度随螯合时间的延长而增加,这否认了纤维外脱矿的概念。Carbo 基脱矿的湿粘结和干粘结的结果表明,其粘结强度比传统的磷酸湿粘结弱,这表明 Carbo 基脱矿不是一种可靠的粘结策略。一种新的 Er:YAG 激光物理蚀刻后再用 Carbo 化学蚀刻的牙本质粘结方案表明,产生了一个微观/纳米级粗糙、坚硬、非胶原暴露的牙本质表面,在干、湿粘结模式下老化后,微拉伸粘结强度得以维持,并且原位组织化学和纳米渗漏在混合层中的信号在老化后降低。体外细胞培养和体内兔深牙本质粘结模型证明了该方案的安全性和生物相容性。综上所述,纤维外脱矿的概念在临床上的应用是有限的和不足的。Er:YAG 激光物理蚀刻后再用 Carbo 化学蚀刻的牙本质粘结策略产生的粘结效果具有可靠性、耐久性和安全性。