Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.
J Am Chem Soc. 2023 Aug 23;145(33):18468-18476. doi: 10.1021/jacs.3c04872. Epub 2023 Aug 11.
Stereocomplexation, or specific interactions among complementary stereoregular macromolecules, is burgeoning as an increasingly impactful design tool, exerting exquisite control of material structure and properties. Since stereocomplexation of polymers produces remarkable transformations in mechanics, morphology, and degradation, we sought to leverage stereocomplexation to tune these properties in peptide-based biomaterials. We found that blending the pentapeptides l- and d-KYFIL triggers dual mechanical and morphological transformations from stiff fibrous hydrogels into less stiff networks of plates, starkly contrasting prior reports that blending l- and d-peptides produces stiffer fibrous hydrogels than the individual constituents. The morphological transformation of KYFIL in phosphate-buffered saline from fibers that entangle into hydrogels to plates that cannot entangle explains the accompanying mechanical transformation. Moreover, the blends shield l-KYFIL from proteolytic degradation, producing materials with comparable proteolytic stability to d-KYFIL but with distinct 2D plate morphologies that in biomaterials may promote unique therapeutic release profiles and cell behavior. To confirm that these morphological, mechanical, and stability changes arise from differences in molecular packing as in polymer stereocomplexation, we acquired X-ray diffraction patterns, which showed l- and d-KYFIL to be amorphous and their blends to be crystalline. Stereocomplexation is particularly apparent in pure water, where l- and d-KYFIL are soluble random coils, and their blends form β-sheets and gel within minutes. Our results highlight the role of molecular details, such as peptide sequence, in determining the material properties resulting from stereocomplexation. Looking forward, the ability of stereocomplexation to orchestrate supramolecular assembly and tune application-critical properties champions stereochemistry as a compelling design consideration.
立构复合,或互补的立体规整高分子之间的特定相互作用,作为一种日益有影响力的设计工具而兴起,对材料结构和性能具有精细的控制作用。由于聚合物的立构复合会在力学、形态和降解方面产生显著的转变,我们试图利用立构复合来调节基于肽的生物材料的这些性质。我们发现,混合五肽 l-和 d-KYFIL 会从刚性纤维状水凝胶转变为刚性较小的板状网络,从而产生双重机械和形态转变,这与先前的报告形成鲜明对比,即混合 l-和 d-肽会产生比单个成分更硬的纤维状水凝胶。在磷酸盐缓冲盐水中,KYFIL 从缠结形成水凝胶的纤维形态转变为不能缠结的板状形态,这解释了伴随而来的机械转变。此外,这些混合物可以保护 l-KYFIL 免受蛋白水解降解,产生与 d-KYFIL 相比具有相似蛋白水解稳定性但具有独特二维板状形态的材料,在生物材料中可能促进独特的治疗释放曲线和细胞行为。为了确认这些形态、力学和稳定性变化是由于类似于聚合物立构复合中的分子堆积差异引起的,我们获取了 X 射线衍射图谱,结果表明 l-和 d-KYFIL 是无定形的,它们的混合物是结晶的。在纯水中,立构复合作用尤其明显,l-和 d-KYFIL 在纯水中是可溶的无规卷曲,而它们的混合物在几分钟内形成 β-折叠和凝胶。我们的结果强调了分子细节(如肽序列)在决定立构复合引起的材料性质方面的作用。展望未来,立构复合能够协调超分子组装并调节关键应用性能,这使得立体化学成为一种引人注目的设计考虑因素。