National Institute of Technology, Raipur 492010, India.
Phys Med Biol. 2023 Aug 29;68(17). doi: 10.1088/1361-6560/acef8c.
. This paper aims to propose an advanced methodology for assessing lung nodules using automated techniques with computed tomography (CT) images to detect lung cancer at an early stage.. The proposed methodology utilizes a fixed-size 3 × 3 kernel in a convolution neural network (CNN) for relevant feature extraction. The network architecture comprises 13 layers, including six convolution layers for deep local and global feature extraction. The nodule detection architecture is enhanced by incorporating a transfer learning-based EfficientNetV_2 network (TLEV2N) to improve training performance. The classification of nodules is achieved by integrating the EfficientNet_V2 architecture of CNN for more accurate benign and malignant classification. The network architecture is fine-tuned to extract relevant features using a deep network while maintaining performance through suitable hyperparameters.. The proposed method significantly reduces the false-negative rate, with the network achieving an accuracy of 97.56% and a specificity of 98.4%. Using the 3 × 3 kernel provides valuable insights into minute pixel variation and enables the extraction of information at a broader morphological level. The continuous responsiveness of the network to fine-tune initial values allows for further optimization possibilities, leading to the design of a standardized system capable of assessing diversified thoracic CT datasets.. This paper highlights the potential of non-invasive techniques for the early detection of lung cancer through the analysis of low-dose CT images. The proposed methodology offers improved accuracy in detecting lung nodules and has the potential to enhance the overall performance of early lung cancer detection. By reconfiguring the proposed method, further advancements can be made to optimize outcomes and contribute to developing a standardized system for assessing diverse thoracic CT datasets.
. 本文旨在提出一种使用计算机断层扫描(CT)图像进行自动技术评估肺结节的先进方法,以早期发现肺癌。. 该方法利用卷积神经网络(CNN)中的固定大小 3×3 核进行相关特征提取。网络架构由 13 层组成,包括 6 个卷积层,用于深度局部和全局特征提取。通过引入基于迁移学习的 EfficientNetV_2 网络(TLEV2N)来增强结节检测架构,提高训练性能。通过集成 CNN 的 EfficientNet_V2 架构来实现结节分类,以进行更准确的良性和恶性分类。通过使用深度网络提取相关特征并通过适当的超参数保持性能来微调网络架构。. 该方法显著降低了假阴性率,网络的准确率达到 97.56%,特异性达到 98.4%。使用 3×3 核可以提供有关微小像素变化的有价值的见解,并能够在更广泛的形态学水平上提取信息。网络对初始值进行微调的持续响应允许进一步优化,从而设计出能够评估多样化胸部 CT 数据集的标准化系统。. 本文通过分析低剂量 CT 图像,强调了非侵入性技术在早期发现肺癌方面的潜力。所提出的方法在检测肺结节方面具有更高的准确性,有望提高早期肺癌检测的整体性能。通过重新配置所提出的方法,可以进一步改进结果,为开发用于评估多样化胸部 CT 数据集的标准化系统做出贡献。