Klostermann C E, Endika M F, Ten Cate E, Buwalda P L, de Vos P, Bitter J H, Zoetendal E G, Schols H A
Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
Carbohydr Polym. 2023 Nov 1;319:121187. doi: 10.1016/j.carbpol.2023.121187. Epub 2023 Jul 8.
Resistant starch (RS) results in relatively high health-beneficial butyrate levels upon fermentation by gut microbiota. We studied how physico-chemical characteristics of RS-3 influenced butyrate production during fermentation. Six highly resistant RS-3 substrates (intrinsic RS-3, 80-95 % RS) differing in chain length (DPn 16-76), Mw distribution (PI) and crystal type (A/B) were fermented in vitro by pooled adult faecal inoculum. All intrinsic RS-3 substrates were fermented to relatively high butyrate levels (acetate/butyrate ≤ 2.5), and especially fermentation of A-type RS-3 prepared from polydisperse α-1,4 glucans resulted in the highest relative butyrate amount produced (acetate/butyrate: 1). Analysis of the microbiota composition after fermentation revealed that intrinsic RS-3 stimulated primarily Lachnospiraceae, Bifidobacterium and Ruminococcus, but the relative abundances of these taxa differed slightly depending on the RS-3 physico-chemical characteristics. Especially intrinsic RS-3 of narrow disperse Mw distribution stimulated relatively more Ruminococcus. Selected RS fractions (polydisperse Mw distribution) obtained after pre-digestion were fermented to acetate and butyrate (ratio ≤ 1.8) and stimulated Lachnospiraceae and Bifidobacterium. This study indicates that especially the α-1,4 glucan Mw distribution dependent microstructure of RS-3 influences butyrate production and microbiota composition during RS-3 fermentation.
抗性淀粉(RS)在被肠道微生物群发酵后会产生相对较高的、有益健康的丁酸盐水平。我们研究了RS-3的物理化学特性如何影响发酵过程中丁酸盐的产生。六种链长(聚合度n为16 - 76)、分子量分布(多分散指数)和晶体类型(A/B型)不同的高抗性RS-3底物(内在RS-3,80 - 95% RS),通过混合成人粪便接种物在体外进行发酵。所有内在RS-3底物都发酵产生了相对较高水平的丁酸盐(乙酸盐/丁酸盐≤2.5),特别是由多分散α-1,4-葡聚糖制备的A型RS-3发酵产生的丁酸盐相对量最高(乙酸盐/丁酸盐:1)。发酵后对微生物群组成的分析表明,内在RS-3主要刺激了毛螺菌科、双歧杆菌属和瘤胃球菌属,但这些分类群的相对丰度因RS-3的物理化学特性而略有不同。特别是分子量分布窄的内在RS-3相对刺激了更多的瘤胃球菌。预消化后获得的选定RS级分(多分散分子量分布)发酵产生乙酸盐和丁酸盐(比例≤1.8),并刺激了毛螺菌科和双歧杆菌属。本研究表明,特别是RS-3中依赖于α-1,4-葡聚糖分子量分布的微观结构会影响RS-3发酵过程中丁酸盐的产生和微生物群组成。