Suppr超能文献

一种基于CT的临床、放射学和放射组学机器学习模型,用于预测实性肾肿瘤(UroCCR-75)的恶性程度。

A CT-Based Clinical, Radiological and Radiomic Machine Learning Model for Predicting Malignancy of Solid Renal Tumors (UroCCR-75).

作者信息

Garnier Cassandre, Ferrer Loïc, Vargas Jennifer, Gallinato Olivier, Jambon Eva, Le Bras Yann, Bernhard Jean-Christophe, Colin Thierry, Grenier Nicolas, Marcelin Clément

机构信息

Department of Imaging and Interventional Radiology, Hôpital Pellegrin, Place Amélie-Raba-Léon, 33076 Bordeaux, France.

SOPHiA GENETICS, Multimodal Research, Cité de la Photonique-Bâtiment GIENAH, 11 Avenue de Canteranne, 33600 Pessac, France.

出版信息

Diagnostics (Basel). 2023 Jul 31;13(15):2548. doi: 10.3390/diagnostics13152548.

Abstract

BACKGROUND

Differentiating benign from malignant renal tumors is important for patient management, and it may be improved by quantitative CT features analysis including radiomic.

PURPOSE

This study aimed to compare performances of machine learning models using bio-clinical, conventional radiologic and 3D-radiomic features for the differentiation of benign and malignant solid renal tumors using pre-operative multiphasic contrast-enhanced CT examinations.

MATERIALS AND METHODS

A unicentric retrospective analysis of prospectively acquired data from a national kidney cancer database was conducted between January 2016 and December 2020. Histologic findings were obtained by robotic-assisted partial nephrectomy. Lesion images were semi-automatically segmented, allowing for a 3D-radiomic features extraction in the nephrographic phase. Conventional radiologic parameters such as shape, content and enhancement were combined in the analysis. Biological and clinical features were obtained from the national database. Eight machine learning (ML) models were trained and validated using a ten-fold cross-validation. Predictive performances were evaluated comparing sensitivity, specificity, accuracy and AUC.

RESULTS

A total of 122 patients with 132 renal lesions, including 111 renal cell carcinomas (RCCs) (111/132, 84%) and 21 benign tumors (21/132, 16%), were evaluated (58 +/- 14 years, men 74%). Unilaterality (100/111, 90% vs. 13/21, 62%; = 0.02), necrosis (81/111, 73% vs. 8/21, 38%; = 0.02), lower values of tumor/cortex ratio at portal time (0.61 vs. 0.74, = 0.01) and higher variation of tumor/cortex ratio between arterial and portal times (0.22 vs. 0.05, = 0.008) were associated with malignancy. A total of 35 radiomics features were selected, and "intensity mean value" was associated with RCCs in multivariate analysis (OR = 0.99). After ten-fold cross-validation, a C5.0Tree model was retained for its predictive performances, yielding a sensitivity of 95%, specificity of 42%, accuracy of 87% and AUC of 0.74.

CONCLUSION

Our machine learning-based model combining clinical, radiologic and radiomics features from multiphasic contrast-enhanced CT scans may help differentiate benign from malignant solid renal tumors.

摘要

背景

区分肾肿瘤的良恶性对患者的治疗管理至关重要,通过包括影像组学在内的定量CT特征分析可能会有所改善。

目的

本研究旨在比较使用生物临床、传统放射学和三维影像组学特征的机器学习模型,利用术前多期对比增强CT检查区分肾实性肿瘤良恶性的性能。

材料与方法

对2016年1月至2020年12月期间从国家肾癌数据库前瞻性获取的数据进行单中心回顾性分析。通过机器人辅助部分肾切除术获得组织学结果。对病变图像进行半自动分割,以便在肾实质期提取三维影像组学特征。分析中纳入了形状、内容和强化等传统放射学参数。从国家数据库中获取生物学和临床特征。使用十折交叉验证对八个机器学习(ML)模型进行训练和验证。通过比较敏感性、特异性、准确性和AUC评估预测性能。

结果

共评估了122例患者的132个肾病变,其中包括111例肾细胞癌(RCC)(111/132,84%)和21例良性肿瘤(21/132,16%)(年龄58±14岁,男性占74%)。单侧性(100/111,90%对13/21,62%;P = 0.02)、坏死(81/111,73%对8/21,38%;P = 0.02)、门静脉期肿瘤/皮质比值较低(0.61对0.74,P = 0.01)以及动脉期与门静脉期之间肿瘤/皮质比值变化较大(0.22对0.05,P = 0.008)与恶性肿瘤相关。共选择了35个影像组学特征,多变量分析中“强度平均值”与肾细胞癌相关(OR = 0.99)。经过十折交叉验证,保留了C5.0Tree模型,因其预测性能,敏感性为95%,特异性为42%,准确性为87%,AUC为0.74。

结论

我们基于机器学习的模型结合了多期对比增强CT扫描的临床、放射学和影像组学特征,可能有助于区分肾实性肿瘤的良恶性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9155/10417436/d46d8a43087c/diagnostics-13-02548-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验