Suppr超能文献

基于图模型的分子急性毒性预测基准研究。

A Benchmark Study of Graph Models for Molecular Acute Toxicity Prediction.

机构信息

Yale College, Yale University, New Haven, CT 06520, USA.

Department of Chemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Int J Mol Sci. 2023 Jul 26;24(15):11966. doi: 10.3390/ijms241511966.

Abstract

With the wide usage of organic compounds, the assessment of their acute toxicity has drawn great attention to reduce animal testing and human labor. The development of graph models provides new opportunities for acute toxicity prediction. In this study, five graph models (message-passing neural network, graph convolution network, graph attention network, path-augmented graph transformer network, and Attentive FP) were applied on four toxicity tasks (fish, , , and ). With the lowest prediction error, Attentive FP was reported to have the best performance in all four tasks. Moreover, the attention weights of the Attentive FP model helped to construct atomic heatmaps and provide good explainability.

摘要

随着有机化合物的广泛应用,评估其急性毒性已引起广泛关注,以减少动物试验和人力。图模型的发展为急性毒性预测提供了新的机会。在这项研究中,五种图模型(消息传递神经网络、图卷积网络、图注意网络、路径增强图转换器网络和注意 FP)应用于四个毒性任务(鱼、、和)。Attentive FP 的预测误差最低,报告称在所有四个任务中表现最好。此外,Attentive FP 模型的注意力权重有助于构建原子热图并提供良好的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425b/10418346/a3c32fccedde/ijms-24-11966-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验