Kotp Mohammed G, Kuo Shiao-Wei
Centre of Functional Polymers and Supramolecular Materials, Department of Materials and Optoelectronic Science, College of Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
Polymers (Basel). 2024 Jun 21;16(13):1759. doi: 10.3390/polym16131759.
Capturing carbon dioxide (CO) is still a major obstacle in the fight against climate change and the reduction of greenhouse gas emissions. To address this problem, we employed a simple Friedel-Crafts alkylation to investigate the effectiveness of porous organic polymers (POPs) based on triphenylamine (TPA) and trihydroxy aryl terms derived from chloranil (CH), designated as TPA-CH POP. We then treated the TPA-CH POP with (3-mercaptopropyl)trimethoxysilane (3-MPTS), forming a TPA-CH POP-SH nanocomposite to enhance CO capture. Utilizing FTIR, solid-state NMR, SEM, TEM, along with XPS techniques, the molecular makeup, morphological characteristics, as well as physical features of TPA-CH POP and the TPA-CH POP-SH nanocomposite were thoroughly explored. Upon scorching to 800 °C, the TPA-CH POP-SH nanocomposite demonstrated more thermal durability over TPA-CH POP, achieving a char yield of up to 71.5 wt.%. The TPA-CH POP-SH nanocomposite displayed a 2.5-times better CO capture, as well as a comparable adsorption capacity of 48.07 cm g at 273 K. Additionally, we found that the TPA-CH POP-SH nanocomposite exhibited an improved CO/nitrogen (N) selectivity versus the original TPA-CH POP. Typical enthalpy changes for CO capture were somewhat increased by the 3-MPTS coating, indicating greater binding energies between CO molecules and the adsorbent surface. Our outcomes demonstrate that a TPA-CH POP composite coated with MPTS is a viable candidate for effective CO capture uses. Our findings encourage the investigation of different functional groups and optimization strategies.
捕获二氧化碳(CO₂)仍然是应对气候变化和减少温室气体排放的主要障碍。为了解决这个问题,我们采用了一种简单的傅克烷基化反应来研究基于三苯胺(TPA)和四氯对苯醌(CH)衍生的三羟基芳基基团的多孔有机聚合物(POPs),即TPA-CH POP的有效性。然后我们用(3-巯基丙基)三甲氧基硅烷(3-MPTS)处理TPA-CH POP,形成TPA-CH POP-SH纳米复合材料以增强CO₂捕获能力。利用傅里叶变换红外光谱(FTIR)、固态核磁共振(NMR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X射线光电子能谱(XPS)技术,对TPA-CH POP和TPA-CH POP-SH纳米复合材料的分子组成、形态特征以及物理特性进行了全面探究。在800℃灼烧后,TPA-CH POP-SH纳米复合材料比TPA-CH POP表现出更高的热稳定性,炭产率高达71.5 wt.%。TPA-CH POP-SH纳米复合材料的CO₂捕获能力提高了2.5倍,在273 K时的吸附容量为48.07 cm³/g,具有可比性。此外,我们发现TPA-CH POP-SH纳米复合材料相对于原始的TPA-CH POP,其CO₂/氮气(N₂)选择性有所提高。3-MPTS涂层使CO₂捕获的典型焓变有所增加,这表明CO₂分子与吸附剂表面之间的结合能更大。我们的研究结果表明,涂覆有MPTS的TPA-CH POP复合材料是有效捕获CO₂应用的可行候选材料。我们的发现鼓励对不同官能团和优化策略进行研究。