Suppr超能文献

通过人工神经网络确定均质化参数并预测5182-Sc-Zr合金性能

Determining Homogenization Parameters and Predicting 5182-Sc-Zr Alloy Properties by Artificial Neural Networks.

作者信息

Li Jingxiao, Du Dongfang, Yang Xiaofang, Qiu Youcai, Xiang Shihua

机构信息

Department of Materials Engineering, Sichuan Engineering Technical College, Deyang 618000, China.

International Joint Laboratory for Light Alloys (Ministry of Education), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Materials (Basel). 2023 Jul 28;16(15):5315. doi: 10.3390/ma16155315.

Abstract

Artificial neural networks (ANNs) were established for the homogenization and recrystallization heat treatment processes of 5182-Sc-Zr alloy. Microhardness and conductivity testing were utilized to determine the precipitation state of Al(ScZr) dispersoids during the homogenization treatment, while electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to observe the microstructure evolution of the alloy. Tensile experiments were performed to test the mechanical properties of the alloy after recrystallization annealing. The two-stage homogenization parameters were determined by studying the changes in microhardness and electrical conductivity of 5182-Sc-Zr alloy after homogenization with the assistance of artificial neural networks: the first-stage homogenization at 275 °C for 20 h and the second-stage homogenization at 440 °C for 12 h. The dispersoids had entirely precipitated after homogenization, and the alloy segregation had improved. A high-accuracy prediction model, incorporating multiple influencing factors through artificial neural networks, was successfully established to predict the mechanical properties of the 5182-Sc-Zr alloy after annealing. Based on the atomic plane spacing in HRTEM, it was determined that the Al(ScZr) dispersoids and the Al matrix maintained a good coherence relationship after annealing at 400 °C.

摘要

针对5182-Sc-Zr合金的均匀化和再结晶热处理工艺建立了人工神经网络。利用显微硬度和电导率测试来确定均匀化处理过程中Al(ScZr)弥散相的析出状态,同时使用电子背散射衍射(EBSD)和透射电子显微镜(TEM)观察合金的微观结构演变。进行拉伸试验以测试再结晶退火后合金的力学性能。借助人工神经网络研究5182-Sc-Zr合金均匀化后的显微硬度和电导率变化,确定了两阶段均匀化参数:第一阶段在275°C下均匀化20小时,第二阶段在440°C下均匀化12小时。均匀化后弥散相已完全析出,合金偏析得到改善。通过人工神经网络成功建立了一个包含多个影响因素的高精度预测模型,用于预测5182-Sc-Zr合金退火后的力学性能。基于高分辨透射电子显微镜(HRTEM)中的原子面间距,确定在400°C退火后Al(ScZr)弥散相与Al基体保持良好的共格关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ebb/10419564/b3c049589182/materials-16-05315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验