Suppr超能文献

采用交叉验证技术的人工神经网络预测环保型工程地质聚合物复合材料的材料设计

Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites.

作者信息

Kuppusamy Yaswanth, Jayaseelan Revathy, Pandulu Gajalakshmi, Sathish Kumar Veerappan, Murali Gunasekaran, Dixit Saurav, Vatin Nikolai Ivanovich

机构信息

Department of Civil Engineering, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai 600048, Tamil Nadu, India.

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia.

出版信息

Materials (Basel). 2022 May 10;15(10):3443. doi: 10.3390/ma15103443.

Abstract

A material-tailored special concrete composite that uses a synthetic fiber to make the concrete ductile and imposes strain-hardening characteristics with eco-friendly ingredients is known as an "engineered geopolymer composite (EGC)". Mix design of special concrete is always tedious, particularly without standards. Researchers used several artificial intelligence tools to analyze and design the special concrete. This paper attempts to design the material EGC through an artificial neural network with a cross-validation technique to achieve the desired compressive and tensile strength. A database was formulated with seven mix-design influencing factors collected from the literature. The five best artificial neural network (ANN) models were trained and analyzed. A gradient descent momentum and adaptive learning rate backpropagation (GDX)-based ANN was developed to cross-validate those five best models. Upon regression analysis, ANN [2:16:16:7] model performed best, with 74% accuracy, whereas ANN [2:16:25:7] performed best in cross-validation, with 80% accuracy. The best individual outputs were "tacked-together" from the best five ANN models and were also analyzed, achieving accuracy up to 88%. It is suggested that when these seven mix-design influencing factors are involved, then ANN [2:16:25:7] can be used to predict the mix which can be cross-verified with GDX-ANN [7:14:2] to ensure accuracy and, due to the few mix trials required, help design the SHGC with lower costs, less time, and fewer materials.

摘要

一种采用合成纤维使混凝土具有延性并通过环保成分赋予应变硬化特性的材料定制特殊混凝土复合材料被称为“工程地质聚合物复合材料(EGC)”。特殊混凝土的配合比设计总是很繁琐,尤其是在没有标准的情况下。研究人员使用了几种人工智能工具来分析和设计特殊混凝土。本文试图通过具有交叉验证技术的人工神经网络来设计EGC材料,以实现所需的抗压强度和抗拉强度。根据从文献中收集的七个配合比设计影响因素建立了一个数据库。对五个最佳人工神经网络(ANN)模型进行了训练和分析。开发了一种基于梯度下降动量和自适应学习率反向传播(GDX)的ANN来对这五个最佳模型进行交叉验证。经过回归分析,ANN [2:16:16:7]模型表现最佳,准确率为74%,而ANN [2:16:25:7]在交叉验证中表现最佳,准确率为80%。从五个最佳ANN模型中“拼接”出最佳的个体输出并进行了分析,准确率高达88%。建议当涉及这七个配合比设计影响因素时,可以使用ANN [2:16:25:7]来预测配合比,并用GDX-ANN [7:14:2]进行交叉验证以确保准确性,并且由于所需的配合比试配较少,有助于以更低的成本、更少的时间和更少的材料来设计应变硬化地质聚合物复合材料(SHGC)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4c9/9146445/87c097d572f9/materials-15-03443-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验