Suppr超能文献

具有改善的磁化热特性的碳掺杂钴锰硅赫斯勒合金微丝,用于多功能应用。

Carbon-Doped CoMnSi Heusler Alloy Microwires with Improved Thermal Characteristics of Magnetization for Multifunctional Applications.

作者信息

Salaheldeen Mohamed, Wederni Asma, Ipatov Mihail, Zhukova Valentina, Zhukov Arcady

机构信息

Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain.

Department of Applied Physics I, EIG, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain.

出版信息

Materials (Basel). 2023 Jul 29;16(15):5333. doi: 10.3390/ma16155333.

Abstract

In the current work, we illustrate the effect of adding a small amount of carbon to very common CoMnSi Heusler alloy-based glass-coated microwires. A significant change in the magnetic and structure structural properties was observed for the new alloy CoMnSiC compared to the CoMnSi alloy. Magneto-structural investigations were performed to clarify the main physical parameters, i.e., structural and magnetic parameters, at a wide range of measuring temperatures. The XRD analysis illustrated the well-defined crystalline structure with average grain size (D = 29.16 nm) and a uniform cubic structure with A2 type compared to the mixed L2 and B2 cubic structures for CoMnSi-based glass-coated microwires. The magnetic behavior was investigated at a temperature range of 5 to 300 K and under an applied external magnetic field (50 Oe to 20 kOe). The thermomagnetic behavior of CoMnSiC glass-coated microwires shows a perfectly stable behavior for a temperature range from 300 K to 5 K. By studying the field cooling (FC) and field heating (FH) magnetization curves at a wide range of applied external magnetic fields, we detected a critical magnetic field (H = 1 kOe) where FC and FH curves have a stable magnetic behavior for the CoMnSiC sample; such stability was not found in the CoMnSi sample. We proposed a phenomenal expression to estimate the magnetization thermal stability, ΔM (%), of FC and FH magnetization curves, and the maximum value was detected at the critical magnetic field where ΔM (%) ≈ 98%. The promising magnetic stability of CoMnSiC glass-coated microwires with temperature is due to the changing of the microstructure induced by the addition of carbon, as the A2-type structure shows a unique stability in response to variation in the temperature and the external magnetic field. In addition, a unique internal mechanical stress was induced during the fabrication process and played a role in controlling magnetic behavior with the temperature and external magnetic field. The obtained results make CoMnSiC a promising candidate for magnetic sensing devices based on Heusler glass-coated microwires.

摘要

在当前工作中,我们阐述了向非常常见的基于CoMnSi赫斯勒合金的玻璃包覆微丝添加少量碳的效果。与CoMnSi合金相比,新合金CoMnSiC在磁性和结构性能方面出现了显著变化。进行了磁结构研究,以阐明在广泛的测量温度范围内的主要物理参数,即结构和磁性参数。XRD分析表明,与基于CoMnSi的玻璃包覆微丝的混合L2和B2立方结构相比,CoMnSiC具有明确的晶体结构,平均晶粒尺寸(D = 29.16 nm)以及均匀的A2型立方结构。在5至300 K的温度范围内以及在施加的外部磁场(50 Oe至20 kOe)下研究了磁行为。CoMnSiC玻璃包覆微丝的热磁行为在300 K至5 K的温度范围内表现出完美的稳定性。通过在广泛的施加外部磁场范围内研究场冷(FC)和场热(FH)磁化曲线,我们检测到一个临界磁场(H = 1 kOe),在该磁场下CoMnSiC样品的FC和FH曲线具有稳定的磁行为;而在CoMnSi样品中未发现这种稳定性。我们提出了一个现象学表达式来估计FC和FH磁化曲线的磁化热稳定性ΔM(%),并且在临界磁场处检测到最大值,此时ΔM(%)≈98%。CoMnSiC玻璃包覆微丝随温度具有良好的磁稳定性,这归因于添加碳引起的微观结构变化,因为A2型结构在温度和外部磁场变化时表现出独特的稳定性。此外,在制造过程中诱导出了独特的内部机械应力,其在控制随温度和外部磁场的磁行为方面发挥了作用。所获得的结果使CoMnSiC成为基于赫斯勒玻璃包覆微丝的磁传感装置的有前途的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e2/10419722/a8e313cb5c4e/materials-16-05333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验