Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain.
Department of Applied Physics I, EIG, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain.
Sensors (Basel). 2023 May 26;23(11):5109. doi: 10.3390/s23115109.
In the current study we have obtained CoFeSi glass-coated microwires with different geometrical aspect ratios, = d/D (diameter of metallic nucleus, d and total diameter, D). The structure and magnetic properties are investigated at a wide range of temperatures. XRD analysis illustrates a notable change in the microstructure by increasing the aspect ratio of CoFeSi-glass-coated microwires. The amorphous structure is detected for the sample with the lowest aspect ratio ( = 0.23), whereas a growth of crystalline structure is observed in the other samples (aspect ratio = 0.30 and 0.43). This change in the microstructure properties correlates with dramatic changing in magnetic properties. For the sample with the lowest -ratio, non-perfect square loops are obtained with low normalized remanent magnetization. A notable enhancement in the squareness and coercivity are obtained by increasing -ratio. Changing the internal stresses strongly affects the microstructure, resulting in a complex magnetic reversal process. The thermomagnetic curves show large irreversibility for the CoFeSi with low -ratio. Meanwhile, if we increase the -ratio, the sample shows perfect ferromagnetic behavior without irreversibility. The current result illustrates the ability to control the microstructure and magnetic properties of CoFeSi glass-coated microwires by changing only their geometric properties without performing any additional heat treatment. The modification of geometric parameters of CoFeSi glass-coated microwires allows to obtain microwires that exhibit an unusual magnetization behavior that offers opportunities to understand the phenomena of various types of magnetic domain structures, which is essentially helpful for designing sensing devices based on thermal magnetization switching.
在当前的研究中,我们获得了具有不同几何纵横比的 CoFeSi 玻璃涂层的金属丝,纵横比为 d/D(金属核的直径,d 和总直径,D)。在很宽的温度范围内研究了结构和磁性能。XRD 分析表明,通过增加 CoFeSi 玻璃涂层金属丝的纵横比,微结构发生了显著变化。对于纵横比最低的样品(=0.23),检测到非晶结构,而在其他样品(纵横比=0.30 和 0.43)中观察到晶体结构的生长。这种微结构性质的变化与磁性能的显著变化相关。对于纵横比最低的样品,获得了具有低归一化剩磁的非完美正方形磁滞回线。通过增加纵横比,可以获得方形度和矫顽力的显著提高。内应力的变化强烈影响微结构,导致复杂的磁反转过程。磁热曲线显示具有低纵横比的 CoFeSi 具有较大的不可逆性。同时,如果我们增加纵横比,样品表现出完美的铁磁行为而没有不可逆性。当前的结果表明,通过仅改变其几何性质而无需进行任何额外的热处理,就可以控制 CoFeSi 玻璃涂层金属丝的微结构和磁性能。CoFeSi 玻璃涂层金属丝的几何参数的修改允许获得表现出异常磁化行为的金属丝,这为理解各种类型的磁畴结构的现象提供了机会,这对于基于热磁化切换的感测设备的设计是非常有帮助的。