Ibrahim Zamkoye Issoufou, Lucas Bruno, Vedraine Sylvain
University of Limoges, Centre National de la Recherche Scientifique, XLIM, UMR 7252, F-87000 Limoges, France.
Nanomaterials (Basel). 2023 Jul 29;13(15):2209. doi: 10.3390/nano13152209.
This work explores the utilization of plasmonic resonance (PR) in silver nanowires to enhance the performance of organic solar cells. We investigate the simultaneous effect of localized surface plasmon resonance (LSPR), surface plasmon polariton (SPP), and waveguide plasmonic mode on silver nanowires, which have not been thoroughly explored before. By employing finite-difference time-domain (FDTD) simulations, we analyze the plasmonic resonance behavior of a ZnO/Silver nanowires/ZnO (ZAZ) electrode structure. Our investigations demonstrate the dominance of LSPR, leading to intense electric fields inside the nanowire and their propagation into the surrounding medium. Additionally, we observe the synergistic effects of SPP and waveguide plasmonic mode, contributing to enhanced light absorption within the active layer of the organic solar cell. This leads to an improvement in photovoltaic performance, as demonstrated by our previous work, showing an approximate 20% increase in photocurrent and overall power conversion efficiency of the organic solar cell. The incorporation of metallic nanostructures exhibiting these multiple plasmonic modes opens up new opportunities for improving light absorption and overall device efficiency. Our study highlights the potential of these combined plasmonic effects for the design and optimization of organic solar cells.
这项工作探索了银纳米线中等离激元共振(PR)的利用,以提高有机太阳能电池的性能。我们研究了局域表面等离激元共振(LSPR)、表面等离激元极化激元(SPP)和波导等离激元模式对银纳米线的同时作用,此前尚未对其进行过深入研究。通过采用时域有限差分(FDTD)模拟,我们分析了ZnO/银纳米线/ZnO(ZAZ)电极结构的等离激元共振行为。我们的研究表明LSPR起主导作用,导致纳米线内部产生强电场并传播到周围介质中。此外,我们观察到SPP和波导等离激元模式的协同效应,有助于增强有机太阳能电池活性层内的光吸收。正如我们之前的工作所示,这导致了光伏性能的提高,有机太阳能电池的光电流和整体功率转换效率提高了约20%。引入表现出这些多种等离激元模式的金属纳米结构为改善光吸收和整体器件效率开辟了新机会。我们的研究突出了这些组合等离激元效应在有机太阳能电池设计和优化方面的潜力。